Anyway, we are now back up and running. So are we back up and running back there? OK, good, because I didn't want to say anything really important unless we got it on tape. So let's take a look at the equivalent circuit of an AC induction motor. 

This is the per-phase diagram of one phase of an AC induction motor, and you can see we have the stator resistance. We also have the leakage inductance right here for the stator circuit. Here's the magnetizing inductance, the rotor leakage inductance, and, of course, the rotor resistance. Or we can also lump the load, the torque load, of the motor shaft right here as well because that's doing real work. So that shows up as a resistance in our circuit. 

Now, you'll notice we have this funky little multiplication term for each one of those parameters which is called a. If a is set to equal 1, that turns out to be the classic expression that you typically see for a circuit of one phase of an AC induction motor. 

But it turns out as long as we don't care what the actual rotor currents and parameters are in terms of real values, all we really are worried about is what do they look like when they're reflected back into the stator circuit, then it turns out a can be anything we want it to be, except for 0 and infinity. 

And it turns out that if we have one particular selection of a, which is really interesting, and that is when a is equal to Lm divided by Lr, Lm being the magnetizing inductance and Lr being the leakage inductance, or I should say the rotor inductance right there. If I set a to equal Lm divided by Lr, something magnificent happens. And you'll notice that when you do that, this term right here will go to 0, completely goes away. 

What does the circuit look like when I do that? It looks like this. We've now got essentially a four-parameter model representation of my AC induction motor with only the stator resistance. We still have a stator leakage inductance right here. But this leakage inductance on the rotor side has completely now been absorbed into these other parameters. 

Well, why is that important? Because that suggests that there is at least one frame of reference, one axis, to where I can take whatever current is flowing and have all of it resolved into two components. One would be a magnetizing component, which is just purely a magnetic circuit, an inductance. The other one is a pure resistive component now. 

So I can take that current, split it up by some reference frame to suggest that, OK, the current is going to be resolved into two quadrature components, a magnetizing component and a torque-producing component. And that's the circuit that is very important to us when we consider field-oriented control because now this allows us to treat the AC induction motor very similar to how we treated a permanent magnet synchronous motor. 

Now, we have the torque which is being produced. Everybody likes to think of the fact that the q-axis current is what's responsible for producing torque. And of course, it is responsible for producing torque. But what a lot of people fail to realize is that the amount of torque which gets produced is also a function of the rotor flux. So if I increase my rotor flux or if I increase my q-axis current, both of those are going to have the effect of increasing my torque. 

But in AC induction motors, we rarely think of it like that. We typically think of torque as being the function of our q-axis current, and we try to leave the rotor flux alone. We don't do any modulation of that to try to adjust torque in any way. And why is that? Well, there's a good reason for that. Because the effect on both axes is quite different in terms of the time constants involved. 

In this case right here, I'm going to leave the rotor flux alone, but I'm going to immediately try to change the q-axis current. What happens is that in the rotor circuit, this also resulted in an immediate change with the current in the rotor, which causes an immediate change in the torque of my machine. So therefore, to get great dynamic response out of an AC induction motor, you typically do it on the q-axis with the q-axis current. 

What if you did want to modulate the torque by controlling or modulating the rotor flux? And that's shown over here in this example. We're going to leave the q-axis constant, the q-axis current constant, but we're going to try to change the rotor flux by modulating the d-axis current. And yes, you can do that. 

But look what happens here. You can make an immediate change on the d-axis current, as shown right here, but in terms of how that affects the rotor flux, there's a really, really long time constant associated with it. This is the L over r time constant of the rotor itself. And this thing can be in the area of 300 milliseconds, 500 mill-- half a second. I mean, so these things typically are very, very long. 

And as a result of that, we typically don't want to do any kind of torque control, especially under very dynamic or transient conditions by modulating the rotor flux. We just typically leave that alone, unless we have to do field weakening or something like that, in which case we'll start modulating the flux. But in most cases, for torque control on an AC induction motor, we're getting back to looking at the q-axis of current. 

Now, because the flux on the rotor is not synchronous to the rotor itself, then just having some kind of encoder on the motor shaft to sense what is the angle of the magnet doesn't work anymore. Because we can sense what the angle of the rotor is. That's fine. 

But what is the angle of the rotor flux? That's what we want to know. And if you remember, because an AC induction motor has slip, we see that the rotor flux is actually sweeping across the surface of the rotor at a speed or a frequency equal to the slip frequency. So just because we measure the angle of the rotor does not mean that we've solved what the angle of the rotor flux is. And that, of course, is what we need to do field-oriented control. 

So one of the differences that you run into right away with an AC induction motor is is you need to recreate a slip estimator. So there's a lot of good references that talk about how to do this, but they all boil down to something that looks pretty much similar to this. Now, this is a more elaborate one because it actually takes into consideration the rotor time constant, the rotor flux time constant. 

Well, what you do is you take your d-axis current and your q-axis current, run it through this expression right here. First of all, you run the d-axis current through this low-pass filter to simulate the time constant of your rotor flux, which then multiplied by that time constant of the rotor, divide that into your q-axis current, and what pops out is an estimate of your slip frequency. 

And once we have the slip frequency, what we can do is combine that with the encoder, which is on the rotor-- or on the motor shaft, and we get angle here. Adjust that to be electrical frequency by the number of poles that we have, divide by 2. So this right here would be my electrical angle of the machine. This is of the rotor, of course. 

Then when I integrate the slip frequency to get slip angle, I can add that onto the actual rotor angle. And guess what? I now am back to an estimate of what the rotor flux angle is. So when you're dealing with an AC induction motor, that's one step you have to do right on the front end of it to try to, once again, find out what the angle of the rotor flux is. 

Then once you have the angle of the rotor flux, it's going through the same procedure that we talked about before with one minor difference. And that is on the-- we've already talked about this, in fact-- on the d-axis, the commanded current for the d-axis current, instead of being 0, well, now we have to have a positive value there in order to generate the rated flux for the machine. 

Other than those two changes, you basically do field-oriented control for an AC induction motor exactly the same way that you would do it for a permanent magnet synchronous motor. And I've shown that in this diagram right here. 

OK. Any questions on AC induction motors? Yes? 

Can you back one slide, please? 

Yep. 

In the slip calculator, why are you using the commanded Id/Iq instead of the feedback Id/Iq? 

That's a good question. Why am I using commanded Id and Iq instead of the feedback values? It turns out that in my simulations I do both. 

OK. 

And what I found that, especially with the commanded Id versus estimated Id, well, actually for both of them, if your current regulator is working fast enough compared to the time constant of the rotor, it doesn't make any difference. OK? The only time it would make a difference is if, for whatever reason, you couldn't reach the achieved values. And then, yeah, you would. 

But as long as you're working in the rated frequency range, that's not a problem. Assuming that your current regulators are doing their job, those two values are going to be the same anyway. Yeah, that's a good question. Any other questions on AC induction motors and how we control them? OK. 

The next motor I want to talk about is called the IPM. How many have ever heard of the IPM motor? OK, Adam's heard of it. Anybody else? Stands for Interior Permanent Magnet motor. And they're gaining in popularity, I think, partly due to the fact that they got a lot of publicity when the Toyota Prius came out with their hybrid-- Toyota came out with their hybrid vehicle. And this is the type of motor that they used as the traction motor in the Toyota Prius. 

An IPM motor is-- you can kind of think of it as a hybrid motor. It's actually a hybrid between a switch reluctance motor and a permanent magnet motor in the fact that it generates both types of torque. There's actually two different types of torque that this motor can generate, and we're going to show you how that actually works. 

The main difference between this and a permanent magnet machine, as the name implies, is that in an IPM motor you take the magnets and you bury them down inside of the rotor structure versus having them surface-mounted on the rotor structure. And what this does is it actually changes the magnetic dynamics to where we can get some pretty neat effects that occur. 

First of all, with a permanent magnet motor, where the magnets are exposed out into the air gap of the machine itself, there's really little to protect it against over-currents which could demagnetize the magnets. Now, it's not as big of a problem as it used to be now that we're using rare-earth magnets and rare-earth compounds like neodymium iron boron. Those things are almost impossible to demagnetize. It used to be a much bigger problem when we were using some of the samarium cobalt and some of those other types of magnets. 

But in general, with an exposed magnet and you hit it with a high current field or a high magnetic field, you can demagnetize them in some cases. By burying the magnets down inside of the rotor, the rotor steel itself acts as a magnetic keeper, if you will, which essentially makes it very, very difficult for anything to hurt that particular magnet. 

The other thing that burying the magnets down inside of the rotor structure does for us is not only can we get reactive torque out of the attraction between the magnets and the stator electromagnets, but we can also get a new type of torque called reluctance torque, which is created by the saliency of the machine. Now, those are two new terms that you probably haven't heard of, but I'm going to show you what those are. 

Now, this, for example, is one rotor laminate of the Toyota Prius motor. And you can see in this case it has eight magnet pole pair-- actually, eight magnets, so it's four magnetic pole pairs. And these are the slots that you see vertically. We can slide the magnets, these V-shaped magnets, down inside of the rotor structure itself. And then, of course, each one of these laminates, you stack them on top each other in the z direction to actually create the rotor structure. 

Now, with an IPM motor, you have the reaction torque, which is what we talked about before. If you remember, we said that torque on a permanent magnet synchronous motor is equal to the quadrature component of the current, the current component of this quadrature, to the rotor flux times this expression right here. But we also get this other torque, which is created by the difference in inductance that's created between the d-axis and the q-axis of this particular machine. 

So how does this actually work? Well, actually, it makes a lot of sense when you think about it. And I'll try to paint this picture, this mind's eye picture, of what's happening here. Let's say that-- well, you'll just have to picture it in your mind-- that I have a kitchen knife, and I lay it down here on the table as shown. And then I come up to one side of that kitchen knife with a magnet. What do you think is going to happen? What do you think the kitchen knife is going to do? 

Move toward the [INAUDIBLE]. 

It's going to move toward the magnet, right? In other words, I've created a torque on that kitchen knife. Well, where did that come from? The kitchen knife is not an electromagnet. The kitchen knife is not a magnet. So what caused that torque on that particular rotor, or on that particular knife? 

Well, the answer is is the fact that magnetic fields are lazy. They don't like to jump through anything but metal or ferrous materials. In fact, the magnet in that case hated to have its flux jump through the air to get to that kitchen knife. And it hated it so much that it's actually willing to exert a force on the kitchen knife so that it can close its magnetic path. In other words, the magnetic reluctance. 

So a magnet is always trying to create a magnetic path, just like electrons in a circuit where they flow with the least amount of resistance. And of course, an air gap represents a big resistance. In order to try to change that, the magnet actually sucks the knife closer to it in order to get a more compact path, least resistance path, for the magnetic flux. And that's essentially how it works. 

So let's take a particular rotor from an IPM motor. And the first thing we're going to do is just look at the reactive torque. Now, that's the torque that we've seen up to now all along. The only difference is, in most of my other examples, I showed that we had a two-pole rotor. But in this case, it's actually going to be a four-pole rotor. 

So what that means is is that before when I was talking about my optimum angle being 90 degrees between the rotor flux and the stator current, well, now, because it's a four-pole rotor, it's going to be 45 degrees. In other words, the optimum angle is adjusted based upon the number of poles that you have divided by 2. So in this case, it's four poles divided by 2. That would be 2. So that means my angle gets adjusted by a factor of 2 as well. 

Let's see how this works. What I'm going to do is I'm going to take this rotor, I'm going to lock it down on the tabletop or on the bench. And then, via my current waveforms, which I'm going to create a sine wave and a cosine wave essentially to feed into this-- let's say it's a two-phase motor-- I'm going to rotate my magnetic field through an angle of 180 degrees, electrically speaking. 

Here's what the torque is going to look like as I do that. First of all, starting off at angle 0, I have a north pole directly against a south pole, south pole directly against a north pole, et cetera. So there's lots of attraction between the rotor magnets and the stator magnets, but they're oriented in such a way that they're not producing any torque. OK? 

And as I start rotating that magnetic field, as shown here, you can watch to see that when I get to the equivalent of 90 degrees right there, that is the point where I generate the maximum torque. And then, of course, when I go to 180 degrees, I'm into opposing magnetic fields, lots of force. But again, the force is not tangential to the surface of the rotor, so we're back to zero torque again. So that's kind of what we would expect in terms of magnet-to-magnet interaction between the rotor and the stator. 

Now let's reset this animation. And what I'm going to do is take all the magnets out so that all I'm left with now is just the iron of the rotor. And let's see if we can demonstrate how we're going to produce torque here. And in this particular orientation, you can see that most of the magnetic field is pinched off. 

In fact, we probably have a lot of fringing effect going on right here, where a lot of the magnetic field is probably forced to jump through the air. This point right here is probably a very saturated part of the steel. And the magnet does not like this particular orientation because it can't generate a lot of flux between the north and south poles. 

But what if I orient the steel in a different position? Or actually I should say, what if I orient the magnets in a different position with respect to the steel? What we see is that we end up in a situation-- I'll stop it right there. Now look at the flux path between the north and the south poles. Now you can see that, because of the way that the steel is oriented with respect to the magnets, it opens up a lot more opportunity for flux to flow through this heavier piece of metal right here, and it's not pinched off at the corners anymore. 

So this would suggest that this position right here is obviously preferred by the magnet. And if I try to deviate from that position by moving the rotor either clockwise or counterclockwise, it's going to fight me in order to get back to that position right there. It's going to generate here with a negative torque or positive torque, always trying to get back to that spot. OK? And then when I get all the way out to 180 degrees, then, once again, I'm pinched off just like I was at 0 degrees. 

So these are the two torques that are being generated. If I throw the magnets back in there now, I have just the reactive torque between the magnetic fields-- or between the magnets of the rotor and the stator. And then I have this reluctance, or the kitchen knife effect, if you will, which is also going on there. 

So what is the total torque on an IPM motor? Well, obviously it's going to be the summation of those two, as seen by this graph taken from Oak Ridge National Labs, where they plotted the torques on the Toyota Prius motor. And again, you can see, just like I showed earlier, here is the reactive torque-- or excuse me, this is the reluctance torque combined with the reactive torque. And you end up generating this new torque waveform, the composite torque waveform, that looks something like this. 

Well, a couple of things are suggested here. Probably most obvious is the fact that my optimum control angle is no longer 90 degrees on this type of motor. In this case, in fact, for these conditions it looks like it's probably closer to 120 degrees or something like that. So that does present a challenge for us when it comes to field-oriented control as to how we control the angle. It's no longer just a simple 90-degree quadrature relationship. 

To make this even worse, the relative amplitude of those two torque curves is dependent on what your current magnitude is. And what we'll see with our next simulation that we're going to do, if you have very, very little current magnitude, an IPM motor looks pretty much like a PMSM motor, where the optimum control angle is, once again, close to 90 degrees because the reluctance torque is almost zero. 

But then if you go really high to the other extreme, like a couple hundred amps or whatever, then all of a sudden it's the reluctance torque that is dominant compared to the reactive torque. And what that does is it tends to shift the optimum control angle all over the place depending on what your current magnitude is. 

So what this suggests is now a need for an algorithm which takes into consideration the magnitude of the current waveform to determine what is the optimum angle that you should control it at. And that'll give us the maximum torque per amp operating point of an IPM motor. 

Now, how do we generate-- how do we change the optimum control angle when you look at it from a rectangular coordinate point of view? What am I doing to my d-axis current? What this means is that in order to get the maximum torque per amp now, instead of setting d-axis current to 0, I'm setting it to some negative value. If d-axis current is positive, I'm over here in this region. But as soon as I cross over into here, this is where the d-axis current becomes negative, and that's where I get that additional boost in my torque waveform. 

So here's an algorithm that-- I mean, you can actually go read this in some journals, IEEE journals or whatever, which actually shows how this would work. Here you have something coming in from your speed loop. And your speed says, I need to generate-- your speed loop says, I need to generate current, either positive current or negative current, depending on whether I want the motor to speed up or to slow down. 

Well, what I do, first of all, is I look at what the magnitude of that torque is-- or of that current waveform is. Based upon that, I sub t, which it's just a scalar number which says here's what the torque is, I take that current value and I run it through this expression right here. 

And that will tell me what my commanded value of my d-axis current should be. So that's what I calculate first. I say calculate the d-axis current to give me that value as required by that equation. And then whatever is left over is what I can use for the q-axis current. 

So I have some kind of a torque limit, or I should say commanded torque, that I'm commanding from my speed regulator. I'm going to split that up into, OK, how would that best resolve on the quadrature and the d-axis? Where do I put that so that my magnitude stays the same, as defined by the speed loop? But how I partition that between Id and Iq is optimally determined by this equation and this topology right here. 

Does that make sense? This is something that you typically don't see in field-oriented systems. I've seen a lot of cases where people still just try to set the d-axis current to 0 when they're controlling IPM motors. You can do that. It'll run. But you're not going to get the maximum torque per amp anymore. So if you really want to find that optimal maximum torque per amp point, operating point, you have to use these equations right here to determine what that is. 

Let's try that. Let's open up a lab exercise number 5. This will be maximum torque per amp calculation on a Toyota Prius motor. So what I've got in there is I've got a block, which actually does that calculation for me. In other words, you feed in a certain amount of current magnitude that you have available that you want to use for control. Then it goes through this maximum torque per amp calculation block to determine what the Id and the Iq values should be. 

Then it actually takes the Toyota Prius motor, or at least a model of it, it does a current sweep by applying a sine wave and a cosine wave to the I alpha and I beta coils-- well, actually, Id and Iq coils. And then it actually plots what is the torque. You can actually see what the angle is where you get maximum torque per amp, and then correlate that measurement to what the calculation from that equation says it should be. 

So let's go ahead and try that. And I'm going to try to use my computer now. Hopefully it's not going to crash again, since Richard doesn't have VSM on his system. I'm going to try to do this, and hopefully it'll work. All right. There we go. So the file is called Prius Motor Current Vector Sweep, and here's what it is. 

So here I have a certain magnitude of current that I'm requesting. Now, see, I want you to be able to have, between  the d and the q-axis currents, I want the total magnitude not to exceed 200 amps, as shown here. I feed this into the maximum torque per amp estimator. And it says, OK, for the parameters that you have and then for the maximum torque, or the maximum current vector that you've given me, it says this is how the current should be partitioned out between Id and Iq. 

It then runs a sine wave and a cosine wave into the PI current controllers, and we can test that graphically. So go ahead and hit the Run button. And you can see as I sweep the current-- in other words, the rotor's locked. All I'm doing is sweeping the magnetic field of the stator around it. 

And you can see that if I look at the reluctance torque, the reactance torque, and the total torque, I actually have something over here which is plotting where the peak torques occur, what the angle is for peak torque, and then also where it found, for the peak torque, what the values of Id and Iq happen to be. 

So if you did everything correctly, what you should see is that the graphical results exactly equal what the empty PA estimator block says it should be, which is based upon that equation that I just showed you. OK? 

Now, here's what's interesting. And just to prove my point, in case you didn't get it before, let's change the amount of current that we have going to the motor. Instead of being 200 amps, let's say it's 10 amps. So go ahead and go in that block where it says 200, open that up and change its value to 10, as I've done right here. Run the simulation again. 

Now look at this. Here is the reactive torque. The yellow waveform is the reluctance torque. Motor didn't change at all. The motor parameter stayed exactly the same. All I'm doing is changing the amplitude of the current waveform. In this case, I   say I only want a 10-amp magnitude current sine wave. 

What you'll notice, that at very, very low current levels, the IPM motor pretty much behaves like PMSM motor. It's almost like it doesn't have much reluctance at all. And we can see that, once again, the optimum control angle is-- well, in this case, 95 degrees. That's pretty close to 90. 

Now let's go to the other extreme. Let's say that I want to pump 2,000 amps into the Prius motor. Change that to a really high value. And again, this is all assuming that the iron has not saturated and everything else. Probably what would more realistically happen is at 2,000 amps, you're going start saturating some things inside the motor. 

But look at this. Now look at your curves. The red curve, once again, is your reluctance torque. I mean, excuse me, your reactive torque. The yellow curve still is the reluctance torque. But look at the ratio between them. As the current magnitude goes up in terms of its amplitude, we see this motor now relying much more heavily on reluctance torque than it is on reactive torque. 

So in that sense, it is kind of a hybrid motor in that it kind of seamlessly transitions between an SR motor and a permanent magnet synchronous motor depending on what the amplitude of your current waveform is. OK? And of course, from a field-oriented control point of view, that does create a challenge for us because that means we always have to be monitoring what is the requested level of current from the speed loop and then changing how we split that up between d-axis and q-axis currents to command into our current regulators. 

OK. Any questions on that? 

Yes. 

Yes. 

How do your PI controllers-- I notice that they're set identically. And did you select these values intentionally? 

So the question is, in this case, the PI controllers are set identically. They shouldn't be. OK? That was an old simulation from back when I didn't think there was any need to change the values on the d and q-axes. But this is a case where you will want to have unique values for your tuning parameters depending on what your inductance is for your d-axis and your q-axis. 

Because what you're essentially doing, in the case where your rotor is oriented where you're pinching down the field, you have less magnetic flux, therefore your inductance is lower. Versus the q-axis-- when you rotate it around so that you have a lot of flux flowing through the rotor, that's a case where you have high inductance then. So the rotor, or I should say the IPM motor, actually generates its torque by what is the difference between the q-axis and d-axis inductances. 

That means also then, since I have different values of inductance for d and q, my controller should reflect that. This was done before I did the series on PI controllers. So I probably need to go in and update that to change that so that each PI term is unique for that axis. 

What you notice is it didn't make that much difference, though, in terms of if you have high enough gain, especially high enough P gain, it's not going to make that much of a difference. 

You see the integral part playing that much of an effect? 

Does the integral part play that much of an effect? It depends. A lot of it depends upon how close you actually want that current to come to the commanded value. And in some cases, yeah, it can be a big deal. 

What I have noticed, though, and this is something that I'm actually doing some research into right now, remember when we did the axis decoupling with the last lab example? OK? What we were doing there is actually nullifying an effect that the integrator was relied heavily on in the past to fix. OK? If we can have good enough access decoupling, we, in fact, might end up with situations where we don't need the integrator in the current loops. 

This is something I've heard before. I know Dr. Bob Lorenz at University of Madison in Wisconsin has proposed this, at least I've heard that he's proposed this indirectly through third-party people. But yeah, I mean, if you can get a good enough feed-forward system with your decoupling with high enough P gain, then do you need an integrator? Maybe not, at least not on the q-axis. d-axis, you might still need it to get it to servo exactly to 0. But the q-axis, if you don't have it exactly servoed to the right spot-- 

I see. 

--and it's in a speed loop, the speed loop's just going to jack up the commanded value until you get there anyway. So anyway, it's food for thought and something that I'm actually looking into. Because if you can eliminate the integrator on the q-axis and all of its headaches that are associated with clamping and everything else, that's kind of a nice effect. Any other questions? OK. Well, let me plug back in here now. There we go. OK. 

I think that's it for the different topologies on the motors here. And now I want to get into another part of the presentation, which is related to sensorless control. I've actually seen some people call it senseless control. No, it's sensorless control. There was a paper from China that just recently came across my desk in an email where it said, "Optimum Senseless Control." It's like no, no, no, no. 

Now, what do we mean by sensorless? Does that mean we're eliminating the sensors from the system? Not really. Sensorless control in motor control circles has come to mean that we eliminate the shaft sensor. So we're not relying on anything being coupled onto the shaft to give us position or velocity information. 

Now, you can imagine what kind of a challenge this presents for field-oriented control, because, as we said earlier, we have to know the angle of the rotor flux. I mean, if we don't know that, it's a non-starter. We can't do anything with field-oriented control if we don't know what field we're orienting to or where it is. So by eliminating the rotor-- the shaft sensors, it creates a unique problem that we have to solve by going through and using some algorithms to try to reconstruct what is the angle of the rotor flux. 

So what I want to do is just tell you some different sensorless techniques that are being used today and then launch into a discussion about InstaSPIN-FOC, which is our latest sensorless FOC algorithm, which I think you'll find pretty interesting. And then after I do that, Adam's going to come up, and he's from LineStream Technologies. And they're going to show some of their stuff that they've kind of layered on InstaSPIN-FOC to provide some really neat features for motion applications. 

So Adam, what do you think, about maybe half-hour after I'm done or-- 

[INAUDIBLE]. 

--45 minutes? Yeah, and then we can both be available afterwards if somebody wants to probe our brains like aliens or whatever, anyway. 

So what do we mean when we talk about a sensorless control system? Well, let's go back, first of all, as a reference point and see a sensored system. Now, in this case, here we have a field-oriented system, where you can see we're relying really heavily on the shaft sensor to get us not only the angle information that we need for the forward and reverse part transforms, but also we need to somehow process that encoder signal or that position signal to get a speed feedback signal that we can then use for our speed loop. 

If we get rid of that shaft sensor, obviously that opens up a gap inside of our FOC system where we have several of those signals missing. How do we handle that? Well, basically, most applications that are sensorless boil down to a topology which looks like this. We take the motor currents and the motor voltages. We process them in such a way where we know some of the parameters of the motor itself so that we can actually synthesize those missing variables. 

And this all has to be done before we even get started with the field-oriented part of the routine. So now when you go hit your interrupt service routine, you got to go through a whole bunch of equations just to get the angle information right here and also the speed information right here that you can use for your field-oriented loop. OK? 

Most of the topologies that are in use today are based upon something loosely called model-based filtering. And that is you have some kind of process right here that's generating a signal. You don't know what that signal is, mostly because it's either buried down inside of your system or maybe it's contaminated with noise. But you do have access to something that is related to that signal. 

So what we can do is take that measurement, provide that information back into a mathematical model of our process using this as error feedback, and then that gives us an estimate, or a better estimate the next time we do another iteration. So we're always comparing the output of our model against the measurement and then generating some kind of error feedback to correct the model for the next iteration. 

Now, the simplest version of something like this is what I call a tracking filter. It's also called an alpha-beta filter. In fact, you can go up on Google and type in alpha-beta filter. There's a whole Wikipedia discussion about how this filter works and how it came to be and all that kind of stuff. 

But it basically looks something like this. Here we have the signal that we are measuring. And we run it into this structure right here, which is nothing more than two cascaded integrators with separate gain stages. So what we do is we take the error signal, and we run it through these two gain blocks, alpha and beta, which are used then to bias up the inputs of the integrators so that the next iteration on the output, hopefully if this thing is working correctly, will actually start to converge onto the signal. 

And you can adjust the performance of this filter by adjusting the alpha and beta parameters. So higher values of alpha and beta give it a lot more of a higher response, higher bandwidth response, to track your signal. But at the same time, that means you're tracking more of the noise as well, and that can be undesirable. 

So in most cases, when you're dealing with something like this, it's kind of a fine line that you have to walk to select alpha and beta correctly so that you get the tracking that you need, but at the same time you're rejecting as much of the noise as possible in your system. 

Now, several years ago I was simulating how alpha-beta filters worked with Mathcad. If anybody's used Mathcad, you know it's kind of a vector processor, where it goes and it'll calculate one vector or one matrix, and then the next line it'll take that information and calculate another vector and another vector and so on. 

And what I found that is for recursive structures like this, it's very, very difficult to implement recursive structures in the form that's shown here. So I had to twist the form of the equations around in a way that was compatible with Mathcad. And what I found shocked me. In fact, this is the structure of the tracking filter when put into a form that could be used by Mathcad. 

And to my dismay, what I discovered was the tracking filter was revealed to be nothing more than the second-order infinite impulse response, low-pass filter. Well, I was kind of disappointed with that. I thought, OK, tracking filters, I thought they were supposed to be something special. They did something unique, when, in fact, all they are is a second-order low-pass filter. 

But then I started thinking about it a little bit more. And the reason that it's different than just a standard second-order filter is not in the equations which support it, but it's in the structure of how it's actually represented. 

What I mean by that is if I take it and I put it in this form of cascaded integrators, what this does is-- for example, if I'm trying to lock into a particular parameter on my machine, in this case position, what I see is this cascaded form, cascaded integrator form, not only will help me lock in and make an estimation of the position, but also all the derivatives of that variable. 

Well, this is not available in the [? kinetical ?] form as shown here. Those signals are all kind of mixed in with some of the other parameters here and some of the coefficients. But in this form right here, they come out very, very nicely. So if this, in fact, is position-- just think about this. You can reason your way through this. 

This is the output of an integrator, this little blue block right here. And if the output of an integrator is position, assuming that my error is very low, what does that mean that the input has to be? You can work it backwards. If the output's position, the input has to be the derivative of position, right? So that's going to be velocity. And the same thing holds true for this integrator. If this just happens to be velocity, it forces this input signal to morph into the acceleration signal. 

So that's one of the unique things about these tracking filters is they can actually morph their signals to represent these other parameters of your system, which are kind of neat, kind of nice. But before we get too excited about this, we still need to remember, at its base, it is a second-order low-pass filter. And we've already seen with low-pass filters, one of the things that you have with every pole that you encounter, what? 

[INAUDIBLE]. 

Phase delay, phase lags. That means there's going to be phase lag on these signals, and that presents a problem. So what we're going to see now is that an observer can fix those problems. But before we do that, again, I want to show you just kind of a typical example in real life of how you deal with this stuff all the time. 

And let's say that you are riding down 635 here in Dallas, and you're in this little red car right here. Now, you are assuming the role of a tracking filter. And what are you tracking? You're tracking the position of this rear bumper right here to make sure that you monitor or regulate the distance between your front bumper and this rear bumper to be a constant value. You got that? OK. 

The problem is, though, you can't see anything ahead of that truck. All you can do, all of your inputs, are confined strictly to, what is the position of that rear bumper? That means if some kind of transient condition occurs and this thing right here starts changing its velocity very, very quickly, you can't even start responding to that change in velocity until the change actually starts occurring, right? So you end up-- if the guy ahead starts to stop real fast, as a tracking filter you might actually close that gap faster than you thought and then have to back out, which is not a good thing. 

But now let me show you the difference between a tracking filter and an observer. What the observer does-- we're going to go back to our old friend the feedforward network. We're going to see how feedforward compensation can help this to work much better. Once again, we're trying to track the position of this bumper right here, so we have that input into our system. But now we have another piece of input into our system. We have access to the signal that is stimulating the system we're trying to track. 

Now, how can that be beneficial to you? Well, if you know that this right here guy is going to start doing something or putting on his brakes, you can start responding now right away instead of having to wait until this guy starts to respond, assuming, of course, that you know something about what the response of the system would be. 

Hopefully it would be to put on the brakes when he sees the car ahead of him stopping, not necessarily in some cases. But if you run that out again, now, of course, there is no phase delay because you can stop simultaneously with the system that's being tracked. 

What enabled us to do that? Feedforward. Feedforward, once again, comes to the rescue. And if we take our alpha-beta filter, as shown here, or the tracking filter, and the same system that we're trying to track up there, we put that same signal that's stimulating that system, we run that down also as a feedforward input into our tracking filter, now we have something called an observer. We can now track those signals with zero or very near zero estimation lag. 

And this right here was actually taken from a paper where the guy was building a velocity observer. Because one of the challenges that you have, especially if you have, let's say, a position servo system that's based upon an encoder, trying to get good velocity information off    of an encoder, especially at very, very slow speeds, is almost impossible if you're just doing some kind of pulse counting technique. 

In other words, the way that a lot of people do it is they'll just count how many pulses have occurred between one interrupt service routine and the next, between one sample point and the next sample point. Well, if the motor's going really, really fast, maybe you get 500 count ticks that occur between one sample point and the next, and that makes a good velocity signal. It's directly proportional to the velocity. 

But what happens if the motor's spinning very, very slowly? Now you may have three encoder ticks per sampling interval, one encoder tick per sampling interval. In fact, it might kind of bounce around between 0 and 3. So you look at that velocity waveform, it's heavily quantized. And it's going to have a lot of noise, quantization noise, on that signal. 

So the particular author of this paper solved that problem by making a velocity observer. And what he does here is he's servoing on the output position from the encoder, which, by the way, is very easy to get. You just look at encoder counts. That's your position, very easy. 

But what he does is he has this observer here so that he has this final stage integrator, which is closing the position loop right here. Assuming, again, that our error is moderately low, that means that the signal right before the integrator has to be velocity. And this velocity is calculated now. It's a mathematical artifact. We can have as much resolution as we want, depending on what resolution we do the calculations in. 

So going from a situation then at low speeds, where you had almost no resolution for your velocity signal, to having an abundance of resolution on your velocity signal. If you look at some simulations that I've actually done which show this, it's quite incredible, especially when you look at the cascaded current loop. Because you can see in the velocity loop, here's all these little perturbations that are caused by the encoder ticks occurring themselves, which, when fed into the current loop, result in all this noise and chatter that you see in the current loop. 

And that results in audible noise that you can actually hear on the motor, right? It sounds like this awful scraping noise or something that the motor's going through as it's spinning at a very, very slow speed. But by using a velocity observer, you can see that I now create this red waveform for the current, and that is much quieter. 

Although, in some cases, especially when you introduce a torque transient, it may not track quite as fast. But still, compared to what you had before, this is going to generate a much better system, which is going to still be very responsive, but not have near the noise that you would have if your velocity signal was synthesized directly from the encoder. 

OK? So that's how an observer basically works. But we still haven't addressed the question, how do we get to a situation where we completely eliminate the shaft sensor? Because that's what we'd really like to do and still get position and velocity information out of it. 

Well, let's go back to that problem. So here we have a motor that is spinning. And what I'm going to do is I'm assuming, if this is a three-phase motor, I've already done the Clarke transform on it. So it's going to be essentially represented as a two-phase motor with an alpha coil, and then 90 degrees from that a beta coil, if you will. 

Let's look at what the equivalent circuit will look like. Obviously I have a series resistance. That's my stator resistance, stator inductance, and then some kind of back-EMF voltage source right here, which is a function of my speed times my back-EMF constant. 

Now, this circuit right here is identical between the alpha coil and the beta coil. And if I represent the differential equation for both of those coils, they look like this right here, and it's basically just adding up the voltages around the loop. The input voltage is equal to the IR voltage drop plus the inductor voltage drop plus the back-EMF voltage drop. Those are the three components of voltage that I'm calculating. 

Now, if we look at this equation right here-- and by the way, this is in the stationary frame. I'm not up on the rotating reference frame because, well, first of all, I can't get up on the rotating reference frame. I don't know what the angle is yet. So all this kind of stuff has to be done in the stationary frame before you start your field-oriented routine. 

If you look at this equation right here, do you see angle information represented in those equations? You see it anywhere? Where is it? 

[INAUDIBLE]. 

Hmm? 

Back-EMF? 

It's in the back-EMF signal. I would love to be able to stick an oscilloscope probe down inside this motor winding and glom onto the back-EMF signal and say, there it is. Now I know angle information. Unfortunately, the back-EMF signal is distributed throughout the windings of the machine. It exists as a mathematical artifact, if you will. We represent it as a lump-sum representation, but really it's distributed across all of my windings. So I can't just go measure it. It's a signal that is not directly observable. 

So I can make an observer to go figure out what that would be, and that's what we're going to do. So how do we make an observer that can actually calculate or estimate what is the back-EMF voltage source? Well, let's start off by now writing the current equation for this coil. I have the same coil, same input voltage, same components. But now I want to come up with an expression where I can represent the motor's-- the windings or the phase current as a function of time. 

Well, it's going to be basically a simple RL type of a time constant. So what's going to happen is I'm going to have two components to this equation. One is going to be a steady-state component, and that's after all the transients have settled out. The current is going to be equal to my input voltage minus my back-EMF voltage divided by my stator resistance. But then I have to multiply that by a transient effect, as shown right here, which takes into consideration the L/R time constant of that particular circuit. 

So how can I represent this in block diagram form? If we go over to here, all I'm going to do is take this mathematical expression, starting with V sub n, subtract out the back-EMF voltage, which, by the way, we don't know what that is yet. Have no idea what that is yet. 

But if we did know what it is, that's where we would put it-- subtract it out. And then what we would do next is divide by the stator resistance and then run it through a single-pole low-pass filter with the same time constant as the L/R time constant in my winding. 

Let's replicate that up here-- same thing. And what I have coming on the output of that whole thing is my estimate of what I think the current is, right? This is what I think the current should be based upon my little calculation here. 

But here's the neat thing. I can actually measure current. That's one of the things that is observable. I can actually measure the phase current. I can use a shunt resistor, or a [? LEM ?] sensor, or any number of different ways to actually measure the phase current. So I know what it is. What I can do now is I can take my estimate of my current, compare it to my actual real current, and generate an error signal. That's going to tell me how well my observer's working, or how well my filter right here is working. 

What I'm going to do now is run that through a PI control loop. I'll explain all this in a minute. I'm going to multiply it by minus 1, which will become obvious in just a minute. But then what do I do with this signal right here? I take this, and I wrap it back around into the input here to become the missing back-EMF piece that makes this whole thing work. 

Now, here's why this works. I mean, at first it may not be intuitively obvious. But let's start with the minus 1. What I have here is I have a closed loop system, negative feedback. All right? If I don't have that minus 1 there, it's essentially positive feedback because I've got two negative pads that it goes through there. See? It gets inverted here, and it gets inverted here. So I need to invert the signal here, otherwise I have a positive feedback signal. That doesn't work. 

But what about the PI loop? Well, what did we say this morning? Remember when I first started talking about negative feedback systems, I said, what is the gain? What is the output compared to the input? The relationship between the output and the input is G over 1 plus GH, right? 

And we said that, assuming that we didn't have poles to worry about, that lots of gain was a good thing because it always made sure that the output came very close to the input. What I want and what I get turn out to be very, very close. 

So I think we can show, at least philosophically, that if my error signal is close to zero, that means that my estimate of my current has to be very close to my real current, right? I mean, there's no other way mathematically that that could be true. If my estimate of my current is not really, really close to my measured current, then I won't have close to zero error. But because it's in a high-gain feedback loop, high-gain feedback loops tend to drive error signals to zero. 

So what's the final implication of this? In order for this thing to work, this output needs to turn into the missing back-EMF signal to make my estimate of my current equal to real current, because that's the piece that was missing. Does that makes sense? I'll say it again, OK? Combine these two facts. High gain in a feedback circuit or feedback system results in low error values, right? 

You're not with me on this. I can see that. Some of you agree, some of you don't. All right. If I can jack my gain up high enough, my error signal should start converging to zero in a feedback system. Otherwise-- I mean, assuming it's not oscillating or doing something weird. If my error signal is close to zero, that means that my estimate of my current has to be close to my real current measurement. No other way that can be true if that's not the case. 

But the only way my estimate of my current can be equal to the real value of the current is if this missing component right here turns into the back-EMF signal. Otherwise, it violates the math of the circuit. That's how it works. That's how a back-EMF observer works. Technically, I guess it's not an observer because it doesn't have feedforward in it. But it's an observer in the sense that it's observing something that was not observable before. OK? 

Well, I kind of question myself-- can this really work? So I built a simulation, which, by the way, is up on my simulation site at TI, and I tried it. I said, OK, let's create this circuit. This is from a Baldor 3-horsepower motor, 3-horsepower machine with these parameters right here. And I have some kind of back-EMF waveform in here, which I designed and put into the circuit, but I did not tell the observer on the other side of the simulation what it was. The other side, the observer, is in this structure right here. 

I just said, start running and see if you can converge onto the back-EMF signal. So you can see right here, right at the first iteration-- this is running at 10-kilohertz sampling frequency-- it starts heading in the right direction. Because of the integrator in my PI loop, it overshot just a little bit there. But then within a very short time, no time at all, you can see at each iteration, it's locking on very, very closely to what the back-EMF voltage is. 

And I tried sine waves. I tried triangle waves. I tried square waves for back-EMF. And of course, within the bandwidth of the observer, in each case that thing would reproduce the back-EMF signal. It worked really pretty nice actually. 

So I said, OK, I've got this circuit now. How would we actually use this now to do field-oriented control? Well, keep in mind, we've got two axes-- the alpha axis and the beta axis. We're still in the stationary reference frame. I've got that observer, the back-EMF observer, running on both of those axes. 

So I'm sampling the motor currents for both of those axes. I know what the motor voltage, the applied voltage, is for both of those axes. And both of these observers running in tandem can calculate what the back-EMF signal is for the alpha axis and for the beta axis. 

Now, I'm not done because all I've done is calculate the back-EMF signals. The back-EMF signals have angle information in them. I need to extract that angle information out of the back-EMF signals. Well, that's this other really neat topology, which is like this angle demodulator here. 

And this, by the way, is the same type of circuit that is used with resolvers, where you have a resolver, and you have a sine and a cosine output from a resolver. And then they run it into the circuit block, where they do this in analog actually, and they can reconstruct what the angle estimate is off of your sine and cosine values. 

So again, you just have to set some coefficients to adjust the responsiveness of this loop. But what you do is if you feed the input here with the sine wave and this input right here with a cosine wave and using cosine and sine kind of beating feedback here, the result is the output will be an estimate of your back-EMF angle. Pretty neat. 

So what I've done-- I'm still not done, though, because what I now have is the angle of the back-EMF voltage vector. What do I really need? I need the back-EMF of the flux vector. Well, fortunately, the back-EMF vector and the flux vector have a very specific relationship in that they're 90 degrees away from each other. So if I know what the flux axis is, my back-EMF axis is going to be right on the q-axis all the time. 

So assuming I know which direction I'm rotating, which I can figure out pretty fast by looking at the velocity signal, then I'll know whether the back-EMF axis is leading that or lagging that. And then once I know that, it's just do that translation, and now I've got the angle of the flux axis. All of this just to get the angle of the rotor flux before we even start doing field-oriented control. 

So that's why when I said these algorithms, you can do field-oriented control in 15 microseconds? Well, yeah, if you've got a nice encoder sensor and everything else in there, really nice. Add this stuff to it now and try to do it sensorless? Now you're up to 40 microseconds, 50 microseconds, that kind of stuff. Because the observer, the angle observer itself, takes the lion's share of the calculation requirements of your machine to do that. OK? 

Well, now that we know what a back-EMF observer-- what it is, let's take a look at different forms of that. Now, here is what's called a sliding mode EMF observer, which does something very, very similar to that. The end goal is the same. We're trying to reproduce, recreate, the EMF voltages both for alpha and beta. 

Again, very, very similar topologies in terms of how they work. The main difference is with a sliding mode observer, they have like this single-bit switcher in the output here, which allows you to have higher gains and still have stability. 

So this comes in really, really handy like when you're way out in left field from your estimates of what the current value should be or what the back-EMF value should be and you want to converge rapidly. Then you can use that switching network to actually drive your answer into the solution space very, very fast. 

But then once you're there, what most people do? Guess what? They just turn off the switcher, and then they're back to a standard observer anyway. The main benefit of sliding mode observer is to give you that initial ability to converge onto your solution space quickly when you have really little idea or no idea what the parameters are. 

So that's, I guess, the subject of some debate. I know there's some motor control people, some motor control professors even, who have suggested that with most motor control applications, you're never so far off with your initial estimate that you could really take advantage of what a sliding mode observer could do for you. 

And then when you do converge close to the right answer, you turn it off anyway. So what, really, advantage does it bring? And I guess that debate is still ongoing, but it does represent at least one of the options that people use today. 

By the way, this is a very simple version of a sliding mode observer. We recently have changed our observer to be a little bit more sophisticated than this. I don't know a lot about the details of it, but I do know that we call it the enhanced sliding mode observer. And it does work-- supposed to be a lot better than this one does. 

Here is another way to do sensorless control which does not involve finding the back-EMF signal at all. It actually involves saliency tracking. So one of the advantages of this technique is that it can work all the way down to zero speed. Most systems which involve using the back-EMF signal can only go so far down in speed before the back-EMF signal becomes so small that it's unusable. 

So you can imagine if your motor's standing still, how much back-EMF is it generating? None. So back-EMF observer obviously can't work down all the way to zero speed. This technique will because it's not tracking back-EMF. 

But it is tracking saliency. And in order to have saliency, that means you have to have something with a little bit of reluctance torque, like an IPM motor. So if you have an IPM motor, this technique works really, really good. If you don't have an IPM motor or something that has a salient structure, if it's perfectly magnetically round, like PMSM machine is in most cases, then you really get limited benefit from using this technique. 

But here's how it works. What we're going to do is we're going to start off with an estimate of what we think the axis is of the machine. And when I say that, I mean we start off with a quadrature reference system, which we have no idea where it really is. But we just say, well, we think this is the d-axis. We think that's the q-axis. 

Now, whatever that d-axis is mathematically inside of our estimate, inside of our model, we're going to inject a high-frequency voltage into that axis. And what we would expect to pop out of what we think is the q-axis is a waveform of the same frequency, but it's a current waveform. 

So in other words, I'm injecting voltage in. I'm getting current out. I'm essentially measuring the inductance of that particular system. Like if you stimulate an inductor with a sine wave voltage, you will see a sine wave of current that results from that. OK? So that's kind of what we're doing here. 

But the thing that's interesting about this is the amplitude of this sine wave, believe it or not, is going to be a function of how well these axes align, in other words, how well your estimate of your d-axis aligns with the real d-axis. If you're way off, then it turns out that the amplitude is going to get bigger and bigger. But as this right here starts getting smaller and smaller in terms of the error, then all of a sudden the amplitude of the signal goes down to practically nothing. 

So what we have is we have an AM-modulated signal, which we treat just like an AM radio. We take that signal, which right here you can see in the top graph, that high-frequency green waveform is being modulated as I'm rotating my estimate of my d-q-axis. With respect to the real d-q-axis, you can see it's actually creating that modulated, amplitude-modulated, waveform, which is a function of my angle error. 

And what I'm trying to do is to get it to arrest into one of those nodes, which means that my angle error is really close to zero. So the first thing I do is, just like with an AM radio, I strip off the bottom part of it and run it through a demodulator and then run it through a low-pass filter. What that's going to give me is the red waveform up there. 

Now, you notice that the red waveform kind of looks like a sine wave. And the sine wave will go through 0 right at the point where the amplitude modulation gets at its smallest value. So I use that sine wave as my error signal to drive the angle estimate, always trying to drive that waveform, or the angle estimate, to have an error of zero. 

So if I'm on one side of the sine wave or the other side of the-- if I'm on one side of the 0 crossing or the other side of the 0 crossing, it's going to produce an error signal with the proper polarity so to drive me back to that point. That's how this whole technique works. 

And it works very, very well. In fact, the neat thing about this-- I've actually seen this-- is that in a lot of motor systems where you don't have any kind of reluctance where you can do this, when you start it up-- we talked about it this morning. How do you get a field-oriented system started? You have to just start rotating the vector and have the motor follow it to hopefully keep up. And then when it finally gets to a point, you transfer over to field-oriented control. 

With this technique, there is no vector that you have to apply to get it to start rotating. It's amazing. You watch the motor.  It's just sitting there dead still while this high frequency is being injected at various points. And then all of a sudden it says, I know where the angle is. 

And then at full torque, it can just start moving very, very slowly. It's amazing. So it does bring some neat advantages to this discussion. But again, you have to have the right motor that has these saliency kind of signatures that you can work with in order to use this. 

Well, here's how you do sensorless control on an AC induction motor, and it's kind of a 2-step process. First of all, we go through and we calculate the stator flux by looking at the motor voltages and the motor currents. Now, the stator flux is actually a very easy vector to calculate. And you can see all it is is my applied input voltage minus my IR voltage drop. That's it. OK? And then once I integrate that, the integral of voltage, obviously, is flux. 

So now I found my stator flux. Once I find my stator flux, I go through another calculation from that to calculate rotor flux. The output of this, of course, one of the outputs since these are vector calculations, is it will give me rotor flux angle. 

Once I have rotor flux angle, then it's the same thing we did before. It's the step 1, step 2,  step 3, step 4, and we're done. This-- all in the green side right here is what we talked about before. All this stuff is all the calculations that have to be done upfront just to get, once again, the angle of the rotor flux. 

Now, since the stator flux is so easy to calculate, one of the options is, well, why don't we just use stator flux reference field-oriented control instead of having to do rotor flux-referenced field-oriented control? It turns out that you can make the case that if you know what the stator flux axis is and you can control some current component which is quadrature to that, that yes, indeed, you can also control the torque of the machine. 

The problem is is since the stator flux and the rotor flux are actually at different angles, you end up with a situation where, when you think you're actually increasing what is the q-axis, you're also putting some of that current unfortunately on the d-axis because it's misaligned. And as a result of that, you have to go through some decoupling circuits. Just like we did with the current regulator decoupling, you have to take this effect into consideration, inject that in to both the d and the q-axis to fix it. 

But then, yeah, you can use stator flux reference systems as well. And there's a lot of systems that do this. I've seen reference designs from-- I know International Rectifier had one that was stator flux reference. Freescale had a stator flux reference field-oriented system. 

But again, if you're looking at dynamic response, if you don't do any kind of decoupling whatsoever-- in most cases like they do it they don't even worry about the decoupling-- then you end up with a system that's a little bit more sluggish because you are stimulating the rotor time constant, and you're putting part of your current vector on the d-axis, which is not a good thing. So for high performance field-oriented control, I will insist that rotor flux reference is still the best way to go. 

There's another very popular sensorless technique called direct torque control. You may have heard of this. This is something that ABB has been involved with since, I think, the late '80s and even into the early '90s. They did a lot of stuff with this. It's really an interesting algorithm, and here's how it works. 

At the front end of this thing is our standard stator flux calculator, just like we saw in the previous slide. All they do is they solve this equation right here to find out what is the stator flux vector. And they solve that in terms of the magnitude of the stator flux and the angle of the stator flux. 

Now, this magnitude of the flux actually goes over here to this commanded flux, commanded stator flux reference value to generate an error signal. The angle actually goes up here into a space vector modulator to control which space vector or voltage we want to apply to the motor, and it also goes into here. And then this right here is the torque calculator, which uses the angle information plus the current information, and we can calculate what the torque is using this expression right here. 

We can then compare that to our commanded torque value. And both of these, then, are error signals, which go up into the hysteretic bang controllers. This works totally in the stationary reference frame. There really is no synchronous reference frame or rotating reference frame that we have to jump onto. So there isn't any Clarke-Park transforms in the conventional sense of how you think of field-oriented control. 

This is all being done in the stator reference frame. We calculate the flux and the torque. And what this algorithm does is it just has a hysteretic band. You know what I mean by that? In other words, here's my torque that I've calculated, and I have an upper limit for that and a lower limit for that. 

So if my torque ever hits the upper limit, it causes something to change in the space vector modulator to drive it down until it hits the lower limit, which causes something else to change, and it just kind of bounces back and forth around inside that little range. Same thing for the torque and the flux here. So what happens is these hysteretic bands will cause changes in the voltage vector which is applied to the motor. 

And for each sector that you're in, you'll find that there is a unique voltage vector, one of those six in space vector modulation, where it will correspond to every condition that you want, whether you want to increase the torque and increase the flux, increase the torque, decrease the flux, decrease the torque, increase the flux. I mean, there's four possibilities. And for every one of those possibilities, you'll find that there's a unique voltage vector that will cause that to happen. 

The biggest advantage of this, besides being the fact that it is, again, in the stator reference frame and easy to calculate, is the fact that it's incredibly fast. There is no PWM. This thing happens asynchronously. In other words, as soon as one of those signals crosses the upper or lower level of the hysteretic band, it immediately causes your space vector modulator to respond. 

It's not like you drop in a new PWM value and then wait for the pick-up point for the next PWM cycle to have that go into effect. It happens immediately. And that's one of the reasons direct torque control has been so popular is for applications where you need extremely fast response in your system. You don't have to wait till the next PWM cycle to cause something to change. It happens, like, right now. OK? 

But because it is asynchronous, It also causes another effect in that it sounds terrible. I mean, it's like you have these things running on the bench, and they're like squealing at you and making all kinds of noises. What you think, my goodness, this thing's broken. But it's just the fact that there is no steady frequency it's running at. It's all bouncing between the upper limit and the lower limit at different rates depending on where the angle is of the motor and things like that, so. 

There's a new form of this called-- I think it's called synchronous DTC where they do use PWM with it. So when you get one of those changes requested from the hysteretic band, it actually goes into a PWM module and waits for the next PWM cycle. I don't know a lot about that, but it seems to me that's kind of defeating one of the main purposes that people like direct torque control is now you've got to wait, once again, for the next PWM cycle to get something to happen. 

OK. I think we could all do for another break. What do you think? I know I could. Why don't we take another break. I think we're doing pretty good on time, assuming that clock is correct. When we come back, I want to talk about specifically InstaSPIN-FOC, show you a demo of InstaSPIN-FOC. And then we're going to have Adam come up and talk about some of the InstaSPIN motion stuff that LineStream has been working on. Let's try to be back here by quarter after or 20 after if we could.
