Well, during the break I had a couple of requests to mention a few things. One is a matter of housekeeping. And that is for those of you who are visiting with us-- and when I say that, I mean not indigenous TI people here, but customers who've come in-- they've requested that you keep your badge. 

And I feel bad about this, because last night I gave a visitor the wrong instructions. I said just drop your badge off at the gate. Not supposed to do that. They want to keep your badges for the entire duration of this. And then you can turn them in at the end of the day tomorrow. 

So if you've got a badge right now-- security badge-- just go ahead and keep it. And be sure to bring it tomorrow morning, because I guess there were a few people who didn't. And as a result of that they had to contact Rich Templeton, and he had to OK it, and all that kind of stuff. But anyway try to remember to bring your badge. 

Second thing is somebody asked the question about saliency. That's one of those terms that we just kind of throw around, because it sounds impressive, and we just assume that other people know what we're talking about. 

So what is saliency? Well basically it's a measure of the magnetic roundness of a motor. So if a motor has the same inductance on the d-axis that it has on the q-axis, we say that it has zero saliency. In other words, it's perfectly, magnetically round. 

If a motor has a shape which is going to cause different inductances on the d and the q-axes, like the IPM motor that I showed, for example, I mean literally saliency is Ld minus Lq, or maybe it's Lq minus-- I can't remember. But it's the difference between those two inductances. 

And what causes that difference in inductances? It's protruding pieces either on the rotor or the stator that cause that to happen. So if you look at a rotor that has a bunch of spokes that come out of it, that's not just a round piece of steel. If it's got protruding spokes, that's going to probably result in high saliency. Or if you've got a stator structure, where you have these poles that come down, in many cases that will result in high saliency. 

But again it's something that's usually caused by variations in the air gap as the motor is spinning. You get these places where the air gap is either bigger or smaller. And that will cause this difference in inductance between Ld and Lq. But technically it's Ld minus Lq. That's saliency. 

All right. Other than that, I'm back on my own computer now. So keep your fingers crossed and pray that this thing is going to make it through, because there's a couple of demos that I want to do with that. 

The one thing that I'd like to talk about kind of to finish up my part of the presentation today is a new sensorless technique that TI has developed over the last couple of years called InstaSPIN-FOC. Now if you're not familiar with how we do things at TI, we come up with names designed to try to get the most confusion out of our customer base. So it was decided by our marketing department that anything that's related to motor control that's coming out of the groups anymore should be called InstaSPIN. 

So we have InstaSPIN-BLDC. We have InstaSPIN-MOTION. We have InstaSPIN-FOC. I think there's a couple of other of InstaSPINs that we're thinking about. 

So if you're a salesperson, and you go to the customer, and he says, I want to use InstaSPIN, you have to say which version of InstaSPIN are you talking about? At which point he'll say, I don't have a clue. I just heard something about InstaSPIN, and I want to get it. 

All right. So make sure when we're talking about InstaSPIN that we know what the suffix is at the end. That's really all that matters. InstaSPIN is just a marketing thing that sounds cool. It's the suffix at the end that tells us what we're talking about here. 

FOC obviously stands for field-oriented control. And so what we're talking about is a new technology to do sensorless field-oriented control. Let me get my thing plugged in here. 

So let's take a look at the history of sensorless algorithms as they apply to motor controlled systems. And this is kind of my swag at it here. If you look at the timeline starting in the late '70s all the way up to present day, you see that sensorless control actually goes back for, gosh, more than 30 years, starting off with just sensorless commutation on brushless DC machines, where people realized that they could use the back-EMF signal, look at the back back-EMF on the undriven coil of a brushless DC motor to get information about where the rotor position was. 

Early in the '80s, we had linear observers, which are kind of like the one that I showed you with the AC induction motor back-EMF observers. And then starting in about the mid '90s, we started to see a lot of effort going into sliding modem servers, DTC from ABB was coming on strong. 

And again these are not when these techniques were invented. I mean sliding modem servers have been around since I think the '40s, or maybe even earlier than that. But it wasn't until I would say the late '90s that they really started making an impact, or making inroads into the motor control world. 

So most recently, and this of course, comes from a lot of work that was done out of the University of Wisconsin-Madison. And this is, I think it's safe to say, is Bob [? Lorenza's ?] baby. Saliency tracking which is again, if you have a system like that that has saliency like we talked about earlier, then you can actually measure the degree of that magnetic non-roundness, if you will, to determine exactly where the rotor is positioned. 

But as of March of last year, we introduced a new observer topology called InstaSPIN-FOC, which we believe has a lot of advantages compared to some of the previous topologies. It's not strictly a back-EMF, observer. It's not a saliency. In fact, if you look at the history here, it's really not like any of these techniques, which makes it kind of hard to classify. 

This is essentially what we're talking about here. InstaSPIN-FOC is an algorithm. It's actually instantiated in RAM on certain parts that we make. And if you look at the parts, these are parts that either have an M suffix or an F suffix-- M meaning InstaSPIN-MOTION, or F meaning InstaSPIN-FAST. We'll get to what FAST is in just a minute. But you get the right part with the right suffix. 

And inside the RAM, just like we have in our IQ math library, and other things that we have in RAM, we now have this neat little observer, if you will, that can do sensorless field-oriented control. 

I think there's several things that are unique about this algorithm. But here's one that I find to be absolutely fascinating. It is a unified observer which takes advantage of the commonality in the stator circuits of just about every motor that's out there. 

What do I mean by that? Well, by using that commonality between all these different motor types, we can do FOC on all these different types of motors. We've already accomplished it with BLDC motors, AC induction motors, permanent magnet synchronous motors, field-oriented-- or I mean IPM motors. 

We have even on the bench demonstrated field-oriented control with a stepper motor. This is not ready to be productized yet, obviously. But it is something that we did. We kind of gasped when it happened. We said, hey, this could really change things in the stepper world. So that's something that we're right now studying to see how repeatable it is, and what is going to be necessary to productize that. 

Even switched reluctance motors. One of the people that we've been working with on this algorithm is absolutely convinced that this technique can work with switched reluctance motors. I mentioned that just to say that it's under study. We'll be making an announcement if it does work hopefully within the next year or two. 

But also just to also point out the fact that this is the list of all the different motor topologies that we have today that can work with that same algorithm. And it's the fact that it is such a-- I don't know how else to say it, except that it is a unified model of how the stator circuit exists, and how it works in most systems. 

Well what is InstaSPIN-FOC? If you lift up the hood, this is what you're going to see. It's actually kind of a conglomeration of three different algorithms. 

The most important one is the observer itself. Now this is called FAST. And we'll talk about what that FAST stands for in just a second. But this is the piece right here that actually enables the whole thing to do sensorless field-oriented control. 

The output of the FAST module, it gives us things like the motor's flux, the motor's speed, the motor angle-- obviously that's the most important piece of it. All the things, all the signalings necessary to do field-oriented control by simply looking at the motors, voltages, and currents. 

We also have another piece of this called Motor ID. And what this does is actually an algorithm that actually incorporates the observer, which goes out and it interrogates your motor, and it runs it through a little dance, and it does a few things. Then it comes back and says, OK, here are your parameters for your motor. We believe we know enough about your motor now that we can drop these into the FAST observer, and do field-oriented control with it. 

That piece of it is challenging, to say the least, because to try to get back to work seamlessly with every motor topology and every weird variation of every motor that ever existed is obviously something that it's taken a lot of effort. We've got it where it works really good on what I'll call the generic motors that are kind of under the bell curve, in the center of the bell curve for each type. Works great. It's the ones where we're out on the tails now that we're trying to make this algorithm to be able to lock onto those. Yes. 

[INAUDIBLE] 

So the question is when you run this auto ID, is it under no load, or can it be used in the application itself? The answer is we prefer to have it under no load, because that's when we get the best result. But under certain conditions, we've already with some customers demonstrated that with their load we can use it as well. 

And with AC induction motors, it's actually a two-part test, one running under hopefully no load, but the other part is a locked rotor test. So you'd have to do some kind of locked rotor on your bench. 

Once you get these parameters, though, for a particular motor type, a model of a particular motor, you don't have to run it again, though. So you only have to do the auto ID if it's a completely foreign motor to InstaSPIN-FOC. Once it's identified it, it actually saves the parameters in memory in flash, so that the next time you start up the processor, if you don't want to go through that whole ID process, you don't have to. You can just immediately start doing field-oriented control. 

The last piece of this is called PowerWARP. What this really is, it's kind of related to the other two. But it's almost like a spare appendix in some respects in that it's got a very specific mission in terms of what it does. This algorithm is designed to dramatically increase the efficiency of AC induction motors under light loads. And I'll tell you a little bit about the history of that in the coming up slides. 

But this technique actually is based upon an algorithm, which is centered on minimizing the copper losses in your rotor and your stator. And what we have found is if you use that algorithm verses maximum torque per amp, or any of a different number of algorithms, it does seem to correlate very well with the maximum efficiency-- especially when you consider your core losses, and other aspects of the machine. So minimizing your I squared R losses seems to be the way to go. And I'll show some examples of that. 

Let's start with motor identification. When I first did this slide, we obviously were very optimistic as to how successful this would be. In fact we went as far to say no data sheet required. And I think in 80-some percent of the cases that's still true. It's those weird motors that we're still learning how to deal with that in fact we do have to get some help from the data sheet. But in most cases-- if you're talking about a permanent magnet machine, for example-- all you need to give it is the current rating from the user in most cases, and the motor ID will take care of the rest. 

For AC induction motor operation, we need a few more things. We need to know the rated current, the rated voltage, and the rated frequency. And then we feed that to this auto ID algorithm. 

It can go out. I mean, because you have to know how to stimulate the motor to get the signals, how to exercise it. You would not stimulate a little Anaheim Automation motor that's the size of my hand the same way you would a 1,000 horsepower AC induction motor. So we need to know something about the motor, and these are just the bare basic parameters that you need to provide to the algorithm. 

All of the offset correction is done for you automatically for the voltages and currents. Automatic current loop tuning. Remember, I said if you use that expression this morning, where you set your [? KA ?] and [? KB ?] terms in accordance with what the R and the L values are, well it does that automatically, because it goes out and calculates what R and L for your motor are. So then it actually figures those out for you as well. 

Now this algorithm, the one thing that it is very sensitive to is knowing what the state or resistance is. And that's not atypical of a lot of sensorless algorithms. 

But I mean every observer, or every [? centralized ?] algorithm, the sensitivity to parameter error is a problem that you have to deal with. Because all of this nice stuff that I showed you up here assumes that your observer really does know what the resistance is, or it really knows what the inductance it. And a lot of cases you don't. You make your best guess. And then if you're wrong, then you start seeing some drifting in the angle accuracy. 

Well it just so happens that InstaSPIN-FOC really, really needs to know what that stator resistance is. To help us to accommodate that, we actually have a stator resistance observer that's running in real time in the background. And what it's doing is it's stimulating the d-axis, because that doesn't produce any torque. But it's stimulating the d-axis in such a way that it's actually going out and making active resistance measurements of the motor in real time. 

So as the motor starts heating up, like in many cases we've seen, like washing machine motors under heavy load, their stator resistance can change by a factor of 3. And when it gets really hot, to the point where you can actually look at the motor and see it shimmering, because heat waves are coming off that thing. So in those cases, we really want to track what the rotor resistance is. And this is just yet another tool which helps us to get much better angle accuracy out of InstaSPIN-FOC over the entire operating range. 

Let's shift our discussion now to the FAST observer. And you can see why we call it FAST. It's actually an acronym. Its stands for flux, angle, speed, and torque. And not only do we get those out of it, but we also get what is the estimate of the I D and the I Q which you can then feed into your field-oriented control loop as shown up here. 

Now InstaSPIN-FOC is not this whole piece of it. That's one thing I think that confuses some people. We provide a reference design which has all the Clarke and Park transforms on it and everything else. That's not InstaSPIN-FOC. That's MotorWARE. 

MotorWARE includes all these libraries to do all this stuff, which also accommodates InstaSPIN-FOC, which is these three pieces right here. So you use InstaSPIN-FOC in a more complete example which you would find in MotorWARE. Does that make sense? Hopefully it does. 

But anyway, what we need to provide to the FAST observer is we need to have samples of the motor phase voltages, samples of the currents. What we're going to do in order to provide feedback of what the phase voltages are, we can't just provide the PWM signals into the A to B converter. What we do is we filter them first, and then we provide the filtered versions of those phase voltages to the algorithm. 

We also then need to know what the RC time constant is of that filter, so that we can actually correct for any phase delay that's associated with that filter, the goal being that we want to actually reconstruct those phase voltages as accurately as we can. We obviously need to know the motor type, and then also the motor ID values which come from the auto ID routine. Once you provide those pieces of information, then this is the stuff that FAST can provide on the output. 

Now one of the things that we're actually talking about is going from FAST to FEAST. And what I mean by that is we have F-E-A-S-T, because one of the signals that this thing is capable of providing which we don't bring out right now is back-EMF. So once we got the back-EMF signals, this really does help us in terms of designing some of the other pieces up here. For example, the field weakening algorithm, if you have back-EMF information, that becomes a little bit simpler to do. 

But more importantly, that cross-coupling correction algorithm that we developed for the ID and IQ current regulators? We calculated that based upon what the stator circuit looked like, right? 

But what we didn't do is if you go in and do it for an AC induction motor, it's a different compensation network. In fact, if you open up my simulation on that particular topic, you'll see that it selects the type of compensation based upon the type of motor that you're providing. Whether it's an IPM, permanent magnet synchronous motor, or AC induction motor, you kick in different algorithms, because the cross-coupling terms will be different for those different types of motors. 

Well the good news is if you have-- and we've already gone through and proven this-- if you have back-EMF information for VD, [? EMFD ?] and [? EMFQ, ?] you can design a compensation network that's also uniform that covers all motor types. And all you have to do then is just use that same compensation structure instead of having to kick in different structures that you have to do if you don't have the back-EMF information. 

So there's various reasons why we're thinking about that. But something to keep your eye on is that there's a chance that very soon we're going to be introducing some more of those internal signals that are inside FAST and bringing them out for our customers to be able to use. 

This just is an example that was taken showing angle accuracy at different speeds on a particular motor. I think was the [? Eston ?] motor. This particular case is running at 75, 750 RPM under various torque load commands, as shown here. And you can see that at 750 RPM, just as an example with a motor, we can hold the angle error in terms of our estimation when compared to an actual encoder to be less than about 0.7 degrees of accuracy. Which is pretty good. 

Now this is speed dependent. So if you start going at slower speeds-- and this is 150 RPM for the same motor-- yeah, then we do see that the angle accuracy starts getting up closer to on average about plus or minus 1 degree in this case. But again still very, very good. 

And we've actually used this motor, even though it is not a true zero speed observer, we can actually use this algorithm to go down to speeds that are incredibly low-- in fact, I'll show a demonstration of that over here on my motor-- in the area of 200, 300 millihertz under load. We've actually been able to do [? centralized ?] control very, very, very nicely. But again it depends on a lot of things-- especially the motor that you have. 

Let me show an example of this. This is something that one of my friends actually did in the lab when we were working on this. Where's my pointer? Here it is. 

Now this is taken on a [? Technic ?] motor. And it just kind of shows under very, very low speeds. And this I think was around 200, 300 millihertz. And this was done under sensorless control. You can kind of see how slow we can make that motor spin. 

Obviously it's no load. So it's not as impressive as if you had a big load on it, which you can kind of see down around at least 200 millihertz, or 300 millihertz. Those are the kinds of speeds that we can achieve on the motor. 

Here's some supporting collateral that we have for InstaSPIN-FOC today. A lot of customers want to know, well, how does it work? Can I try it out without actually having to get a development board, and set something up in my lab? The answer is yes. 

We actually have a website where we have a simulation. In fact it's some VisSim simulations that I created that exist on this website. You can actually select what kind of load you want. You can select from a list of motors. And what it'll do is under different load profiles-- like this right here would be kind of like a punch-press application-- you can actually go through then, and in some cases actually specify what your load profile will look like, and run the simulation. 

It takes about 4 to 5 minutes. And then at that period of time, it spits out all these graphs, which show angle error, torque speed-- all these different graphs-- to kind of give you an idea of how it works. So it's a way to kind of do a quick drive if you just want to take it out for a spin without investing a whole bunch of your time, and a whole bunch of energy getting development tools set up in your lab. 

Go up to the website, and it's listed right there at the bottom. And you can fire it up and specify your motor parameters, or at least select from a palette of different motors, and different load applications, and run it, and get an idea of what it can do for you. 

Well let's talk about the PowerWARP part of this now. One of things that the people have been working on-- gosh, this is from the late '70s, even-- is a way to make AC induction motors run more efficiently when they're lightly loaded. If you will recall, our AC motor stator current consists of two parts. It includes a magnetized current component, and also a load current, which is quadrature to that. That's your torque current. 

Well what happens when your torque current goes to zero, or very close to zero? The fact is you haven't done anything to change the magnetizing part of your current. It's still at rated flux, rated current. And as a result of that, the motor tends to be very, very inefficient, because it's not producing much torque. But it's still drinking a lot of magnetizing current. 

So there have been different ways. And this right here technique, which is based upon the old NOLA patent from NASA, would actually measure the zero crossings of the voltage waveform and the current waveform. And it would start to see when the power factor of the waveforms got bad, which was indicated by a separation of the times of the zero crossings between the voltage and the current. It would use a triac to start phasing down the voltage amplitude of the motor. 

Well what they're really trying to do indirectly is to control the level of the motor flux. And that's what just about all these techniques are based on. When the motor is not being utilized heavily, then why have all that motor flux there? So they all tend to try to scale down the level of the motor flux. 

This does it indirectly by controlling the voltage. Well now that we're doing this with FOC, we can directly control the motor flux by the d-axis. So we have something that does pretty much the same thing, with the exception, of course, that it's throttling back on the d-axis current, reducing the flux. 

And that has the same effect of pretty much putting the motor to sleep-- which can be bad. And that's why, for example, if you put the motor to sleep, you've reduced your flux. 

Let's say now all of a sudden you get this huge load step function, where it needs to create lots of torque in order to keep the speed. Well, what is torque? Torque is the product of your IQ current times your rotor flux. Your rotor flux has been significantly reduced, and it has a long time constant associated with it-- like 300 to 500 milliseconds. So you can only put so much q-axis current out there before you've reached the limit of your inverter. 

That means you're in trouble. In many cases you can't get enough torque to meet the torque demand of the load, and the motor will stall. And in fact, there's nothing, even with PowerWARP, that's going to prevent that from happening. 

The difference is that if you do stall the motor, with all the older techniques you have, pretty much you either burn up your motor, or you have to hit the reset button and start the whole thing over again. But with PowerWARP, because we have the FAST observer running concurrently to that, even if the motor speed is brought down to zero, we never lose control of where the angle is. And as a result of that, we can bring it back up gracefully to speed once the stall has occurred. There's nothing that can prevent the stall if you have defluxed your machine. 

So that's something to be careful of. And that's why a lot of people, if they're in situations where they can have unexpected torque perturbations, they'll just leave the flux on the machine set high so they can handle them. 

But in a lot of other applications, where you have time to anticipate when you're going to need lots of torque-- like for example an elevator application-- when it's just sitting there, why not deflux the motor? Because nothing's happening. And even if you get a bunch of people in there, and you push the button, before you start moving, you can still build the flux back up in your machine, and then do the move. 

So in those kind of cases, this right here shows an example of how we can improve efficiency dramatically compared to not doing any kind of defluxing. This cyan-colored line right here represents efficiency without any motor defluxing whatsoever. And you can see under light loaded conditions, the efficiency's going down into the tank-- somewhere around 15% to 25%. 

By turning PowerWARP on, you can see we can hold efficiency much higher at even lower load ratings simply because we are defluxing the machine. And we're defluxing the machine on an algorithm using an algorithm that's based upon minimizing the I squared R losses, like I talked about earlier. 

Let's compare that approach to some other approaches that are out there. This was actually field tested in an application. This was an agricultural application for air and humidity control. We benchmarked it against the traditional triac drive. We benchmarked it against a standard variable frequency drive. And then we benchmarked it against an energy optimized drive, which was designed to increase efficiency, but it was based upon a different algorithm-- perhaps maximum torque per amp, or trying to seek some peak of another curve. 

Obviously against the triac drive, we blew it apart-- almost twice the energy savings that we were able to achieve. Over a standard variable frequency drive, still very impressive performance-- 70% of the energy versus from one to the other. 

But here's the one that really impressed me. And this was from a very large European German drives manufacturer, which I'm not really suppose to say their name, but you probably can figure out who they are. They had a drive that was actually optimized to do this same kind of thing, to save energy on AC induction machines. And even against that, we were able to get 28% better efficiency performance out of that algorithm than what they were capable of. 

So I'm not sure if this is something that would be of interest to you, if anybody's doing anything with AC induction motors. This technique only works with AC induction motors. But if you do stuff with AC induction motors, and you have an application where the motor is sitting idle for a long period of time, this might be of some interest to you. 

Well let's talk about the software a little bit. Now some of the guys in the middle back there are going to start laughing at me, because I consider myself to be a hardware engineer. And every time the word software comes up, I usually run to the phone and ask for one of my friends to help me out with this. So I'm going to try to talk about software from the hardware perspective, which will probably be somewhat nauseating to some of you, but hopefully others will be able to understand exactly where I'm coming from. 

Let's take a look at this. This right here just kind of shows how we've implemented InstaSPIN-FOC. Now we have, in RAM, we have the observer, which is the FAST observer. And then we also have examples of the speed PI loop, the current regulators, the reverse Park transform. All those kind of things, which I guess I don't really consider to be part of InstaSPIN-FOC but they are in RAM. So we do have examples of that. 

So in one envisionment of how you would actually use this, you would enter and interrupt service routine. All you'd have to do is read your phase voltages and read your phase currents, pass those over to the observer, and then tell the observer from that point on calculate everything for me. And all I need to know is what is the values of V u, V v, and V w that I'm supposed to drop into the PWM module. All right. 

And so in this case right here, the user has really very little interaction with the process at all. And this would be, for example, where people, they say I need to make my motor spin, but I really don't like motor control. I don't want to touch it any more than I have to. TI, you just do the whole thing for me. Well we can. This is right here an example of that. 

But there's other examples where you're dealing with some customers that maybe they have their own special little blend of herbs and spices that they like to drop into some of these components right here in terms of how they clamp the integrators, or whatever they do. For those people, we actually provide another implementation model that's actually not shown here. It's actually on the next slide. There we go. Where all you have to use if you want to to is just the FAST observer in RAM. But then all this other stuff out here is in Flash or in RAM. 

So again if you're a customer that prefers to kind of roll up your shirt sleeves and do your own PI control loops, and your own Clarke-Park transformers, or you have a special way to do it that maybe you patented, fine. You can still do that. You can still implement your piece of your IP that you consider it to be proprietary, and then also use FAST or use InstaSPIN to be compatible with that. 

Now all of this stuff is currently accessible through something we call MotorWARE. And really, when you look at it, MotorWARE is really nothing more than just a collection of folders and links to a directory structure. I actually put a bunch of slides together to show this. But I think maybe it would be more instructive to just show it to you. Because I've got MotorWARE installed on my system here. 

Great. Let me show you how this works. Now this is a free download from Texas Instruments. You can actually go up on our site. If you type in MotorWARE, it will take you right to this location. Let me move this down here a little bit. 

Here it is. Now this is MotorWARE 11. So this is the latest one. Here we go. I hear my fan speeding up. It sounds like my computer's going to overheat here pretty soon. Keep your fingers crossed. 

So this is what it is, actually. Let me turn this up a little bit. You have all these different folders that you can go into. Right now it includes InstaSPIN-FOC, InstaSPIN-MOTION, different drivers, modules, resources. And then, of course, links to Code Composer Studio. 

Well I'm interested in InstaSPIN-FOC. So I'm going to click on that. We actually right now have it in the 02x family, and we also have it in the 06x family. The 6x instantiation is more mature. I'm going to actually open that up. And that gives me more options. 

So you see, I keep drilling down into the structure right here. This gives me a GUI interface option. And then I also have three different options of hardware that I can use-- the DRV8312. The 8301 or the high voltage kit. I'll just pick the 8312. Example projects. The documentation for all the projects. 

Now this is interesting. This is all done with Doxygen. This is new to me. I'm not used Doxygen. For those of you who have lived your whole life by it, I guess you're kind of used to this. But I thought it was kind of neat. It provides really a nice way to document your code instead of the little hashtag hashtag, or the backslash backslash technique. You can actually now use an HTML structure to get some really neat things out of this. Let me show you what I'm talking about. 

So for example, the modules, we have user modules, control modules. We also have all the projects for this, which you can open up. But let me just go to, let's say, the control modules. 

This right here shows all of the different control modules that are used in InstaSPIN-FOC. That's quite a long list of them. We have modules that do everything-- modules that call modules. To set a bit somewhere in a register, you never set the bit. You call a module or a routine that actually does that for you. 

But then, here's where I can show you. You get down to the part. And this is where you can see the HTML description of that. Each one of these routines, it tells you what the inputs, what the outputs are, what the parameters are, what is passed to it, what you get back from it, what kind of handles it uses for every one of the modules if you want to look at the-- let me go back here-- data structures. 

Ah, that wasn't actually the one I wanted. Let me see if I can find this. Here we go. Here we go. User. That's what I was looking for. 

So this right here defines all of the different user variables that you can set, system frequency, how many sensors, how many current sensors you have, what is the PWM period. All of these different variables that are used that need to be specified, or can be used in conjunction with InstaSPIN-FOC. And again, when you look at the Doxygen part of that, all of the documentation is printed out here as well. 

So it's really a nice collection of not only the modules, the data structures, but also all the documentation if you want to go down to where is it-- resources here. And you can go drill down it once again into your particular set up [? 069. ?] And you can get all these PDFs about how to use the kits, how to use the GUI interfaces, the GUIs, how you install them, how you interface with it. I mean like I said, I don't consider myself to be a software guy at all. But I was on the first try able to get the GUI up and running and talking to the software, and doing nice, neat little things with it without any trouble whatsoever just by simply following the step-by-step instructions that are included here under the Resources tab. 

So that's what MotorWARE is. MotorWARE itself is really just a collection of all these different pieces of information. Oops. Wait a minute. Let me get back over to here. There we go. 

Now one of things that's also different, besides just the structure of how that MotorWARE is just a collection of these pieces of information, it also represents a different way of coding. It's a very structured, very object-oriented way of interfacing with the FAST modules-- the FAST algorithm. 

And there's also, as part of the MotorWARE folder structure, there's a document there which describes exactly what is expected of you from a structural point of view if you're writing C code, how you interface to our structures, and you try to maintain that structure that we use to be compatible in your code. I mean, obviously you can write any kind of code you want to. But for maximum effectiveness, we go through and explain exactly what structure we used, why we used it, why the object-oriented approach seems to be the right way to handle this, and just kind of an encouragement to you to try to keep in line with that same structure in order to interface with it. 

But another thing that's different is instead of using macros, we actually use inline C. Now the way that a lot of stuff was done with Control Suite was a lot of things were done with macros. And that was basically you invoke a certain function or whatever. And it just pulls up a macro, and just insert it right in there to be equivalent to that. 

We've actually gone with an inlined approach, which one of the advantages that it gives us is not only the inherent speed improvement that you see compared to using macro, but another advantage is if you're debugging inline code versus macro code, if you hit a macro, and you try to do a single step through it or something, it's not going to be able to do that. With inline code, you can actually hit an inline structure, and you can actually single step through it. So it makes it also very easy to debug if you're trying to figure out what's going on with something in your algorithm. 

So I think pretty much you get the idea of what I'm talking about, or at least hopefully you do. Let me put this in presentation mode here. 

So that's kind of what it is. I've got a demo of it here just in a second. But before we do that, I know Richard, he likes to, at the end of every section, he has one of these quizzes. So I'm going to ask you a couple questions now about InstaSPIN-FOC and see if you can get these right. First of all, question number one, what are the three sub-modules of InstaSPIN-FOC? 

[INAUDIBLE] 

The what? Motor ID, PowerWARP technology, and the FAST observer. Excellent. All right. 

List at least three types of motors that InstaSPIN-FOC can control. 

AC induction. 

AC induction, BLDC, PMSM. Right. And also IPM, stepper motor, and hopefully someday switch reluctance. We'll see. 

What component of InstaSPIN-FOC results in energy savings with AC induction motors? 

PowerWARP 

PowerWARP. Exactly. 

List at least five system ADC measurements that are required by FAST? 

[INAUDIBLE] 

What's that? 

Current. 

Current. So there's two currents that we need at least, and three voltages. Good enough. We also measure the bus voltage, and do that feed forward technique that I was talking about this morning to actually compensate for variations in [? your bus ?] voltage. 

List the four outputs of the FAST observer. 

Flux [INAUDIBLE] 

Flux, angle, speed, torque. It's kind of corny, but it does make it easy to remember, doesn't it? You can just kind of rattle them off, then. 

How are FAST-enabled processors distinguished from non-FAST devices? 

F or M. 

F or M in the suffix of the part number itself. Exactly. 

True or false. MotorWARE uses macros instead of online code to enable easier debugging. 

False. 

False. That's the one we just talked about. So hopefully you would have got that one. And last, list at least two development boards for use with InstaSPIN software. Didn't get into that. 

[INAUDIBLE] LaunchPad. 

That hasn't made my slide set, yet. That's the latest one that's available. Yes, you're right. InstaSPIN LaunchPad. 

I've got a question. Is this stuff only available [? ROMmed ?] into specific processors that support it, or is this IP available for [? ROMming ?] into or for Flashing into other TI processors? 

So the question is how have we instantiated this? Is it RAM only, or do we also provide the source code for Flashing, and other TI processors? 

At this point it's RAM-only. We don't provide the source code to anybody at this time. Now I'll throw that in there, because with any IP, or any proprietary technology, how long is it going to be before somebody else figures it out, or does something that's comparable? 

But at least as of right now, we are the only people that have anything that can do what this can do with motors. And as a result of that, we've decided to be perhaps conservatively cautious on how we protect that IP. So right now, there's no instantiation of this outside of the RAM. 

In fact, even some of the simulation stuff that I'm going to be coming up with and introducing on ViSim, it's going to actually, the simulation will interface to a target board, a target 69 card, and actually exercise the code in RAM, and then feed the results back for the rest of the simulation. And that's how we'll be able to simulate it in the loop. Maybe a simple way to say it is right now there is absolutely no instantiation of this anywhere, even in simulations, except in RAM. Yes. 

Is the RAM code executed at the full clock speed? 

Yes full clock speed. Exactly. Good point. 

[INAUDIBLE] devices is [INAUDIBLE]. 

[INAUDIBLE] 

No. There's no limitation. The RAM runs [INAUDIBLE]. 

Right. 

[INAUDIBLE] 60 megahertz, and the 69 is-- 

90. 

[INAUDIBLE] 

Yeah. So we still haven't answered this question yet. The LaunchPad obviously is one. Can you think of another one? 

Control card? 

Well the control card is the CPU card. But what power board could it sit on? I guess that's what I'm looking for. The DRV8312 kit-- I should just tell you, I guess. It's the 8312 kit, the 8301 kit, the high-voltage board that we have-- the high-voltage kit. And then now most recently the LaunchPad. So we've got right now four development options for you depending upon your motor and your particular application. 

So that's pretty much all I have. I hope that FAST is something that-- or I should say that InstaSPIN-FOC is something that you'll get a chance to take out for a test drive. I think if you do motor control, you're going to find that it's really easy to use, and it really solves a lot of your questions. 

But what else can you do with InstaSPIN-FOC? Are there other ways you could use this to your advantage? I just want to point out now, just hear me out. Valentine's Day is coming up here pretty fast. And maybe you're looking for that special gift for your wife or your girlfriend. Maybe she would be interested in going through some InstaSPIN-FOC stuff with you. You could tell her what you've learned in this seminar, maybe give her control card. That might be something that would be really special. Just saying, food for thought. 

I have not tried this with my wife. I just want you to know. But if anybody does do this, write me an email. And let me know how it goes. 

[INAUDIBLE] bring your wife tomorrow [INAUDIBLE]. 

Let me show you what this thing can do here. Let me fire up the GUI interface. And we can actually watch this control a motor here. Where is my GUI? Everything's been rescaled because of this new resolution on the projector here. And I'm trying to find where my GUI is. Oh, here it is. It's hidden down here, now. 

So what I'm going to do is I've got this little DRV8312 board. In fact, maybe what we could do now is bring the lights up, because I'm not going to be using too much of the screen anymore. Most of it will be focused on what I'm doing right here. So bring it up at least so we can see the screen, what's on the screen. Yeah. That's probably good enough. 

So I have this little DRV8312 board, as shown right here. And right in the middle of this board is this tiny little chip right here. That's the DRV8312. It's actually got a 5-amp motor driver built into this thing. And that's what I'm going to be using to drive my motor here. Kind of an interesting application. 

This is a 230 volt HVAC motor that I'm driving at 24 volts. So I'm going to have to go through and change some of the interrogation parameters to [? learn ?] this motor. But basically it'll work just fine. Let me fire this up here and we'll see what happens. 

So now GUI composer is launching. Here we go. And it's loading the application, downloading the code, restarting the model, all this kind of stuff. It kind of steps you through what it's doing at any particular moment in time. And there we go. 

So this is the GUI interface. And what we see right away is that there's this red light shown right here, which says the motor has not been identified yet. So we can't do any field-oriented control with it just yet. 

In most cases just leaving these to the default values here is good enough. But since I'm driving a 230-volt motor with 24 volts, I'm going to change one of these parameters. I'm going to change the current that it uses to estimate the inductance to 0.2 amps. 0.2 whoops. 0.2. There we go. Estimation frequency 20 hertz. That looks good. 

Motor pole pairs. Now this is interesting. Let me show you this motor. This is the rotor inside of the motor. And now it's got these three little magnetic bands on it. But each one of these magnetic bands is divided up into four poles. So you have four times three. That's 12 poles. 

So if I want to know how many pole pairs that is, six. So I need to go ahead and put six in that column right there instead of four. Maximum motor current, maximum frequency. I'm going to change that to, let's say, 200. That should work I think. It is a PMSM motor. 

So now I'm going to say go out and identify the motor. Now it's going to use the auto ID to go through a couple of steps. And  I'll hold it up so you could see it. 

Right now you can feel the motor vibrating or buzzing as it's trying to go out and get the resistance of the stator [? winding. ?] And then it starts spinning kind of rough. But then it starts getting the hang of it. 

And you can see as the motor's spinning, it's actually in real time updating its estimates of the parameters in that green block down there. Actually, it's got the resistance already defined. But now it's going to try to go through and find the inductance values. 

And there's a little progress bar at the top which shows you how it's going in terms of identifying this motor. So we're about half done. Now once this process is done for a particular motor, you don't need to do it again. I'm just kind of showing you how you would go through it for the first time for a particular motor. 

And it's done. Now the little light at the bottom says, yes, the motor has been identified. Kind of hard to see, but it said that it had stator resistance of 4.3 ohms, both LSD and LSQ are equal to 0.035 henries. 

And then it also did a flux estimation. Now they do the flux in volts per hertz. That's not a very standard way to do flux, but it's kind of an easy way, I guess, to measure it. 0.6 volts per hertz is the flux rating. 

Let's go now over to the speed torque tab. And this is where we can actually exercise the motor. We can change the acceleration. I think that's a little slow, the default value. I'm going to jack it up a little bit. But I can set the motor speed to, let's say, 100 RPM. 

Again since I only have 24 volts to deal with, I'm not going to be able to get the same kind of RPMs that I would if I had a 400-volt bus. But let's go ahead and start this thing then. And what it will do, because I've enabled this option, it always will go out and do a resistance estimation before it starts moving. You can turn that off if you want to. 

So right now it's going to spin up to speed. See if you can see that. I love this motor, because the back bearing is strong enough to support it so that I can hold it open like this, and you can actually see what's going on inside of it. 

This motor has a bigger brother which I used to use in my simulations in my seminars. Unfortunately it's in a Turkish prison right now. They wouldn't let me get back on the plane with it when I was leaving Turkey. And though I fought and argued, they said, no, you go to the gate. The motor stays here. 

The problem was I was taking the motor through security as two different pieces. I had the rotor separate. And as soon as the rotor glommed onto the side of the x-ray machine because of its magnet, they just freaked out. 

They said no magnet on airplane. I'm like what? I mean your phone has a magnet in it, dummy. And there's all kinds of things. No. No magnet on airplane. So it's over in Turkey somewhere. 

You can set the gains of the speed loop right here. In this case I've got it tuned to like a 2. KP is 2. KL is 0.02. Let's see how slow we can make this thing go. I'm going to put it down to 10 RPM. And I'll hold it up in just a second, so you can see it. 

But one thing I've noticed is that when it gets down that slow in speed, it does kind of help to tune the gain to be a little bit higher so we can get some better performance. I'm going to change the KP to 5. I think I'll change this to 0.1. 

So you can kind of see at 10 RPM we can still get pretty, pretty slow speeds on this. And I mean it's not a lot of torque. But I mean you can feel that this thing is still generating some torque. 

Now what's amazing I think, equally amazing about this demonstration, is not only the algorithm and how it works, but that this tiny little chip down here can actually control a motor that big, and provide up to 1 newton-metre of torque on this particular motor. And if you come up here afterwards, and I'll have it running, you can load the thing down, and put your finger right on the chip. It's cool. It's running just like an icicle. It doesn't heat up at all. 

It's rather interesting. I found out after the fact that that chip originally was not designed by our motor group. It was designed by our digital audio people. They were used to designing class D amplifiers. So they designed this thing to have a dead time of like 5 nanoseconds. 

And I was blown away by that. I mean, yeah, it's great. I mean, I love feeding those kind of nice waveforms to my motor. But it's kind of like feeding caviar to a pig. I mean, the motor doesn't care that much about it. But see, they were thinking oh, no, no, we need to have pristine waveforms, because we're driving speakers or something. 

And this thing can go all the way up to at least between 0 and 200 kilohertz switching frequency. That chip is rated to work at 95% efficiency. It's amazing what that little chip can do. So again if you're not only interested in the algorithm, but certainly that little DRV chip is quite amazing. 

So what I'm going to do, well, let me bring the gains back down just a little bit. There we go. And I'm going to bring up the speed to let's say 50 RPM. And under that condition, at 50 RPM, I can generate quite a bit of torque on that motor. 

And like I said, it's got a little torque readout right here. You can see in that case I was putting well over 1.2 newton-metres of torque on the motor. 

So that's pretty much it. Just again wanted to make you aware that this is what we have. And you can easily get this by ordering a 69 control card with the F or the M part suffix on it, with a little DRV8312 chip, or a DRV8301 board. We have lots of different options that this can work with. 

So I'll have this running up here at the end. You can come up and play with it. But I think Adam, you want to come up now and talk a little bit about InstaSPIN-MOTION and kind of take us through to the finish line here.
