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Designing a UCD3138 Controlled Bridgeless PFC 

Bosheng Sun High Performance Isolated 
 

ABSTRACT 

The UCD3138[1] is a digital power supply controller from Texas Instruments offering superior levels of 
integration and performance in a single chip solution. The flexible nature of the UCD3138 makes it suitable for a 
wide variety of power conversion applications. In addition, multiple peripherals inside the device have been 
specifically optimized to enhance the performance of ac/dc applications such as a power factor correction (PFC). 
 
The UCD3138 is a fully programmable solution offering customers complete control of their application. 
However, the use of digital controllers in PFC design brings new challenges to many analog designers in their 
effort to change the design from the analog space to its new digital environment. This application note gives a 
step by step guidance of how to design a UCD3138 controlled bridgeless PFC. It covers the hardware interface, 
voltage loop and current loop implementation, protection, firmware structure, internal state machines, as well as 
some advanced features. Finally, a graphical user interface (GUI) and how to tune a new designed PFC are 
presented. For single phase or interleaved PFC design, please refer to application note [2] and [3]. 
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1 Overview 

1.1 Block Diagram 
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Figure 1. UCD3138 controlled bridgeless PFC block diagram 
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Figure 1 is an example of block diagram of a bridgeless PFC controlled by UCD3138. The input voltage Vin line 
and neutral are sensed separately by two ADC channels AD_07 and AD_08. PFC output voltage Vbus_sen is 
sensed by another ADC channel AD_03. In addition, a separate Vout sensing circuit is connect to an on chip 
analog comparator COMP_F for over voltage protection (OVP). Two current transformers are used to sense the 
MOSFET instantaneous current and their output I_CT1 and I_CT2 are connected to EAP1 and EAP2 
respectively for current loop control. In addition, I_CT1 and I_CT2 are also connected to two on chip analog 
comparators COMP_E and COMP_D for cycle-by-cycle current protection. The control loop generates two PWM 
outputs DPWM1B and DPWM2B to drive the MOSFETs through gate driver.   
 
An average current mode control is used for input current regulation: current reference is calculated based on 
Vin, voltage loop output and voltage feed forward. This averaged current reference is then translated to 
instantaneous signal as if they were sensed at the middle of CT output. The translated reference is then 
compared to the middle point value of CT output, the error goes through a 2-pole 2-zero digital compensator 
CLA1, a PWM signal is generated based on the compensator output to control the PFC. 
 
It needs to be mentioned here that the above configuration accommodates with TI’s PFC evaluation board 
PWR026. It is not necessary to follow this configuration. For example, I_CT1/I_CT2 can be connected to a 
different EPA channel, a different CLA can be used for compensation, and PFC can be driven by different 
DPWM output as well. However, it is recommended using the similar configuration as PWR026, so that most of 
the PWR026 source code can be reused and the design period can be much shorter.  

1.2 Signal Conditioning and Interface 
For each input signal to the UCD3138, its magnitude should accommodate the measurement range of the 
UCD3138. In the UCD3138, the ADC measurement range is 0 – 2.5V, the error ADC measurement range is 0 - 
1.6V, the analog comparator range is 0 – 2.5V. On the other hand, to have the best signal-to-noise ratio, the 
input signal should be as big as possible. For these reason, the signal conditioning for each input signal should 
follow the subsequent guidelines. 

For Vin, the voltage divider:
max_*2

5.2

in

vin
V

K   

For Vout, the voltage divider:
max_

5.2

out
vout V

K   

For current transformer: the maximum middle point of I_CT1 and I_CT2 should less than 1.6V, and the maximum 
peak value should less than 2.5V. 
 

2 Voltage Loop 

2.1 Overview 
Since the speed constraints on the voltage loop bandwidth are typically low, it can easily be implemented by 
pure firmware. As shown in Figure 1. Vout_sen is sensed by a 12-bit ADC. An error signal is calculated based on 
the target output voltage and then processed by a proportional-integral (PI) controller. The output of this PI 
controller will take part in the current reference calculation. 
 
To meet the load transient response requirement, a non-linear PI gain is used. When the voltage error exceeds a 
threshold, a larger PI gain is used.  

2.2 Firmware Implementation of PI Controller 
Following is the code example for this nonlinear PI controller. Two different gains are used in this example. If the 
load transient response is still not met, a third or forth gain can be added.    
 



   SLUA713 – April, 2014 

 Designing a UCD3138 Controlled Bridgeless PFC 5 

All the codes in this application note are just examples of how to implement a specific function, it does not 
contain the variable definitions and how the function gets called. Although plenty of comments are provided to 
explain how it works, there may still exist unclearness. To better understand the code, please refer to PWR026 
PFC EVM source code for details.  
 
inline int32 proportional_integral(int32 error) //error is difference between ADC value and reference 
{ 

int32 output, steady_state_error; 
 

if( abs(error) < iv.pis.nl_threshold) //if error in steady state range 
{ 
 steady_state_error = iv.vbus_target - (iv.vbus_filtered >> 6); 
 iv.pis.p = iv.pis.kp * steady_state_error; 
 iv.pis.i = iv.pis.i + (iv.pis.ki * steady_state_error); 
} 
else 
{ //non-linear gain for Voltage loop 
 iv.pis.p = iv.pis.kp_nl * error;//Q15*Q12 
 iv.pis.i = iv.pis.i + (iv.pis.ki_nl * error); 
} 
 
if(iv.ac_drop_recovery_not_complete) 
{ 
 if(((error < 0) && (iv.pis.i > 0)) || ((error > 0) && (iv.pis.i < 0))) 
 { 

iv.pis.i = 0; //reset the integral just when AC voltage has restored 
iv.ac_drop_recovery_not_complete = 0; //AC drop recovery completed 

     } 
} 
 
if(iv.pis.i > PI_I_HIGH_LIMIT) //clamp integrator 
{ 
 iv.pis.i = PI_I_HIGH_LIMIT; 
} 
else if (iv.pis.i < PI_I_LOW_LIMIT) 
{ 
 iv.pis.i = PI_I_LOW_LIMIT; 
} 
 
output = (iv.pis.p + iv.pis.i) >> 12; //scale for Q15 from Q15 coefficients and Q12 from ADC 
 
if(output > PI_OUTPUT_HIGH_LIMIT) //clamp PI output 
{ 
 output = PI_OUTPUT_HIGH_LIMIT; 
} 
else if (output < PI_OUTPUT_LOW_LIMIT) 
{ 
 output = PI_OUTPUT_LOW_LIMIT; 
} 
 
iv.pis.output = output; 
return output; 

} 
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3 Current Loop 

3.1 Overview 
The PFC current loop is used to regulate the inductor current so that the input current will follow the input 
voltage. To do this, the current reference, which takes the same shape of input voltage, needs to be calculated 
first. For average current mode controlled PFC, the average current reference is calculated as: 
 
Iref = Km * A * B * C           (1) 
 
while: 
Km: multiplier gain 
A: Voltage loop output 
B: 1/Vin_rms

2 

C: sensed input voltage Kvin*Vin 

 

However, for bridgeless with CT sensing, because the current transformer is placed right above the switch, it 
only senses the switch current, which is only the rising part of the inductor current. So the calculated average 
current reference needs to be translated to instantaneous current signal as if it is sensed by CT.  
 
Once the current reference is calculated, the corresponding function blocks in the chip need to be configured to 
close the loop. There are 3 major hardware blocks for the current loop: Front End, Filter, and DPWM. These 
blocks will be introduced one by one. 
 

 
Figure 2. Current loop 

3.2 Multiplier Gain Km 
The multiplier gain Km is defined as follows: 
From (1), 
 

2/))(( rmsvininvmmref VKVUKBCAKI                                                                        (2) 

 
where, 
 
Uv : voltage loop output 
Vrms : RMS voltage of digitized input voltage 
Kvin : Input voltage divider 
 
For digital implementation, the voltage signals in (2) are digitized, a suitable fixed-point notation is chosen so that 
each signal is normalized with the maximum value equals to 1. For maximum power output, at minimum Vin, the 
voltage controller output and the reference current command will be at their maximum values, Uvmax and Iref_max 

respectively. Since Iref and Uv are calculated in per unit, their maximum values are, Iref_max = 1, Uvmax = 1. 
Therefore,  
 

vinpk
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For sine wave input, this can be written as, 
 

)min(
)min(

2
)min(

2

5.0
2 pkvin

vinpk

pkvin
m VK

KV

VK
K                                                                                                  (4)   

3.3 Vin Sensing and Rectification 
The input AC voltage is measured by separately sensing the line and neutral voltages with referencing to internal 
power ground. By comparing the sensed line and neutral signals, the firmware will know whether this is a 
positive half-cycle or a negative half-cycle. During a positive half-cycle, the first DC/DC boost circuit, L1-Q1-D1, 
is active and the boost current returns to AC neutral through diode D4. During a negative half-cycle, the second 
DC/DC boost circuit, L2-Q2-D2, is active and the boost current return to AC line through diode D3.  
 
A bridgeless PFC essentially consists of two-phase boost circuits, but only one phase is active at any moment. 
Compared with conventional single phase PFC using the same power devices, the switching losses of a 
bridgeless PFC and a single phase PFC should be the same. However, bridgeless PFC current passes only one 
slow diode (D4 for positive half-cycle and D3 for negative half-cycle) instead of two at any time. Thus, the 
efficiency improvement relies on the conduction loss difference between one diode and two. Moreover, the 
bridgeless PFC efficiency can be further improved by turning the inactive switch fully on. For example, during a 
positive cycle, while Q1 is controlled by the PWM signal, Q2 can be fully turned on. Since the voltage drop on 
MOSFET Q2 may be lower than diode D4 when the flowing current is below certain a value, the return current 
partially or totally flows through L1-D1-RL-Q2-L2, and then back to AC source. The conduction loss is decreased 
and the circuit efficiency can be improved, especially at light load. Similarly, during a negative cycle, Q1 is fully 
turned on while Q2 is switching. The control waveform for Q1 and Q2 is shown in Figure 3. 
 

 
 

Figure 3. PWM waveform for bridgeless PFC 
 
 
The following is the code of this mechanism for bridgeless PFC: 
 
inline void rectify_vac(void) 
{ 

if(iv.adc_raw[AC_L_CHANNEL] > iv.adc_raw[AC_N_CHANNEL] ) //this is the cycle for line 
{ 
 iv.vin_raw = iv.adc_raw[AC_L_CHANNEL] - iv.adc_raw[AC_N_CHANNEL]; 
 iv.positive = 1; //tell other functions that this is positive cycle 
 



SLUA713 – April, 2014 

8 Designing a UCD3138 Controlled Bridgeless PFC 

 Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0;  //first turn off line 
 Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_EN = 1;  //then turn off neutral 
 FeCtrl1Regs.EADCDAC.bit.DAC_VALUE = iv.i_target_sensed << 4; //use EADC1 
 LoopMuxRegs.FILTERMUX.bit.FILTER1_FE_SEL = 1; //use EADC1 to drive filter 1  
 
 if(iv.pwm_on == 1) 
 { 

Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 0;  //now turn on line PWM 
 
//if it is really positive cycle, not a glitch, turn on the 2nd phase switch  
if(iv.vin_filtered > 80) 
{ 
 Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_VAL = 1;     
} 
else  
{ 
 Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0;     
} 

 } 
 else 
 { 

Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0;  //neutral drive low 
Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 1;  //now disable line PWM 

 } 
} 
else //cycle for neutral 
{ 
 iv.vin_raw = iv.adc_raw[AC_N_CHANNEL] - iv.adc_raw[AC_L_CHANNEL];  
 iv.positive = 0; //tell other functions that this is negative cycle 
 
 Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0;  //first turn off neutral 
 Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 1;  //then turn off line PWM  
 FeCtrl2Regs.EADCDAC.bit.DAC_VALUE = iv.i_target_sensed << 4; //use EADC2 
 LoopMuxRegs.FILTERMUX.bit.FILTER1_FE_SEL = 2; //use EADC2 to drive filter 1  
 
 if(iv.pwm_on == 1) 
 { 

Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_EN = 0;  //now turn on neutral PWM 
 
//if it is really negative cycle, not a glitch, turn on the 1st phase switch   
if(iv.vin_filtered > 80) 
{ 
 Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_VAL = 1;     
} 
else 
{ 
 Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0;     
} 

} 
 else 
 { 

Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0;  //line drive low 
Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_EN = 1;  //now disable neutral PWM 

 } 
} 
iv.vin_sum = iv.vin_raw + iv.vin_sum - (iv.vin_sum >> 2); 
iv.vin_filtered = iv.vin_sum >> 2; //filtered vin measurement 

} 
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3.4 Calculate Vin_rms
2 

The RMS value is defined as: 

 acT

ac
rms dttV

T
V

0

22 )(*
1

     (5) 

In discrete format: 

 
N

nV
Vrms

2

2 )(      (6) 

 
Vin is sampled every 20μs, then the sampled Vin is squared and accumulated in each AC cycle. The RMS value 
is calculated by divide the number of accumulator.  
 
First, calculate V(n)2  
 
iv.vin_squared = (iv.vin_filtered * iv.vin_filtered) >> 9;  
 
Then, calculate sum 
 
//sum V(n)2 for the negative cycle 
inline void accumulate_negative_cycle_values() 
{ 

iv.negative_vin_squared_accumulate = iv.vin_squared + iv.negative_vin_squared_accumulate; 
} 
 
// sum V(n)2 for the positive cycle 
inline void accumulate_positive_cycle_values() 
{ 

iv.positive_vin_squared_accumulate = iv.vin_squared + v.positive_vin_squared_accumulate; 
} 
 
Finally, calculate Vin_rms2 
 
//calculate Vin_rms2 for the negative cycle 
inline void store_negative_cycle_values(void) 
{ 

iv.vin_squared_average = iv.negative_vin_squared_accumulate / iv.negative_cycle_counter; 
iv.vin_squared_for_ac_drop = iv.vin_squared_average; 

} 
 
//calculate Vin_rms2 for the positive cycle 
inline void store_positive_cycle_values(void) 
{ 

iv.vin_squared_average = iv.positive_vin_squared_accumulate / iv.positive_cycle_counter; 
iv.vin_squared_for_ac_drop = iv.vin_squared_average; 

} 

3.5 Calculate Vin Feed Forward 
The following function is used to calculate voltage feed forward Km * B 
 
Km: multiplier gain 
B: 1/Vin_rms2 

 
inline void voltage_feed_forward(void) //calculate Km/Vrms^2 
{ 

if(iv.vin_squared_average < VAC_MIN_OFF_SQ_AVG) //if VAC is below normal operation range 
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{ 
 iv.vff_multiplier = K_FEED_FORWARD / VAC_MIN_OFF_SQ_AVG; 

 //Q30/Q15 = Q15 limit to minimum operating voltage to avoid overflow 
} 
else //here if vac is within range 
{ 
 if(abs(iv.vin_squared_average –  
 (iv.vin_squared_slow_average >> VRECT_SQUARED_SLOW_AVERAGE_SHIFT)) >

 (iv.vin_squared_slow_average >> (VRECT_SQUARED_SLOW_AVERAGE_SHIFT + 4))) 
 //compares difference between fast and slow VAC values to a percentage of the slow value. 
 //instead of multiplying the slow value times a constant, it uses a shift.  So a shift of +4, for  
 //example = 1/16  or .0625% of the slow value. 
 //so the code below is executed if the difference between fast and slow values is greater  
 //than the percentage.  It uses the fast value. 
 { 

iv.vff_multiplier = K_FEED_FORWARD / iv.vin_squared_average; 
 } 
 else //here if the fast and slow values are close - use the slow value. 
 { 

if(iv.vin_squared_slow_average < (VAC_MIN_OFF_SQ_AVG <<   
  VRECT_SQUARED_SLOW_AVERAGE_SHIFT))  

{ 
 iv.vff_multiplier = K_FEED_FORWARD / AC_MIN_OFF_SQ_AVG; 
 //Q30/Q15 limit to minimum operating voltage to avoid overflow 
} 
else 
{ 
 iv.vff_multiplier = K_FEED_FORWARD / (iv.vin_squared_slow_average >>  

  VRECT_SQUARED_SLOW_AVERAGE_SHIFT); 
} 

 } 
} 

} 

3.6 Calculate Average Current Reference  
Now we got A, B, C, we can calculate the average current reference. This is done in 2 functions: 
 
First, calculate Km * A * B: 
 
inline void handle_voltage_loop(void) 
{ 

iv.i_target_average = ((iv.vff_multiplier >> 5) * proportional_integral(iv.vbus_target - v.adc_avg[VBUS_CHANNEL])) >> 11; 
} 
 
Then, calculate Km * A * B * C, which is the average current reference. As mentioned at the 1.1, this average 
current reference needs to be translated to instantaneous current as if it is sensed at the middle point of CT 
output.   

3.7 Translate average reference to instantaneous reference  
For PFC with CT sensing, because the current transformer is placed right above the switch, it only senses the 
switch current, which is only the rising part of the inductor current. For digital control implementation, this switch 
current signal is measured at the middle of PWM on time Ta. It is an instantaneous value, represented as Isense in 
Figures 4a and 4b below. The measured switching current Isense is equal to the average PFC inductor current 
only when the current is continuous. When the current becomes discontinuous, Isense is not equal to the average 
PFC inductor current any more. In order to compute the inductor average current, the relationship between the 
middle point sensing current Isense and the average inductor current over a switching period should be derived 
and be applicable for both continuous conduction mode (CCM) and discontinuous conduction mode (DCM). 
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Figure 4a. Sensed current waveform at continuous conduction mode 
 

 
 

Figure 4b. Sensed current waveform at discontinuous conduction mode 
 
For a boost-type converter in steady state operation, the volt-second of the boost inductor should maintain 
balance in each switching period: 
 

Ta  * Vin = Tb  * (VO – Vin)               (7) 
 
Here Ta is the current rising time (PWM on time), Tb is the current falling time (PWM off time), Vin is input voltage, 
and Vo is output voltage, assuming all power devices are ideal.  
 
From Figures above, we can calculate the inductor average current Iave in terms of Isense:  

 

 
T

TT
II ba

senseave


 *           (8) 

Where T is the switching period. 
 
Combine (7) and (8) together, we get: 
 

 
oa

inoave
sense VT

VVTI
I

*

** 
     (9) 

 
Through Equation 9, the average inductor current Iave is interpreted in an instantaneous switch current Isense. Iave 
is the desired current and Isense is the current reference for current control loop. The real instantaneous switch 
current is sensed and compared with this reference, the error is sent to a fast error ADC (EAP), and finally the 
digitized error signal is sent to a digital compensator to close the current control loop. 
 
inline void calculate_current_target_ct(void) 
{ 

int32 pointer; 
 
//for EMI CAP compensation 
iv.cir_buff[iv.cir_buff_ptr] = iv.vin_filtered; 
pointer = (iv.cir_buff_ptr - iv.cir_buff_delay) & 0x3f; //get pointer to delayed signal 
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iv.cir_buff_ptr = (iv.cir_buff_ptr + 1) & 0x3f; 
 
iv.vbus_scaled = (iv.adc_avg[VBUS_CHANNEL] * VBUS_TO_VAC_SCALING) >> 15;  

 
iv.cla_output_filtered = (Uint32)Filter1Regs.FILTERYNREAD.bit.YN + iv.cla_output_filtered - (iv.cla_output_filtered >> 2); 

 
if(iv.vbus_scaled > iv.vin_filtered) 
{ 
 iv.numerator_1 = iv.vbus_scaled - iv.vin_filtered;  
} 
else 
{ 
 iv.numerator_1 = 0; 
} 
 
iv.numerator_2 = (iv.i_target_average * iv.numerator_1) >> 8;   
 
iv.numerator_3 = (iv.cir_buff[pointer] * iv.numerator_2);  
 
iv.denominator = ((iv.cla_output_filtered >> 6) * iv.vbus_scaled) >> 11;  
 
iv.i_target_sensed = (iv.numerator_3 / iv.denominator) + iv.i_target_offset;  
 
if(iv.i_target_sensed > 0x3ff) //saturate current target at maximum current 
{ 
 iv.i_target_sensed = 0x3ff; 
} 

} 
 

3.8 Current Feed Back Front End Configuration 
The Front End measures the difference between the current feed back signal and the current reference 
calculated in 3.7. It passes this digital error information to the filter. Those need to be configured are: which front 
end is used for current feedback signal sensing, what is the AFE_GAIN, which CLA filter is used and which 
DPWM module is used. UCD3138 is very flexible, the front end, filter and DPWM are multi-to-multi connection. 
The following code example is based on the PWR026 PFC EVM hardware: it uses Frond End1, Frond End2, 
CLA1, DPWM1 and DPWM2. Other configurations are also possible. For detail of how to configure UCD3138 
digital peripherals, please refer to programmer manual [4]. 
 
void init_front_end1(void) //for CT1 sensing 
{ 

FeCtrl1Regs.EADCDAC.bit.DAC_VALUE = 0; 
} 
 
void init_front_end2(void) //for CT2 sensing 
{ 

FeCtrl2Regs.EADCDAC.bit.DAC_VALUE = 0; 
} 
 
void init_loop_mux(void) 
{ 

LoopMuxRegs.SAMPTRIGCTRL.bit.FE1_TRIG_DPWM1_EN = 1; //Use DPWM1 sample trigger for FE1 
LoopMuxRegs.SAMPTRIGCTRL.bit.FE2_TRIG_DPWM2_EN = 1; //Use DPWM2 sample trigger for FE2 
 
LoopMuxRegs.FILTERMUX.bit.FILTER1_PER_SEL = 1;//CLA1 switching period select from DPWM1 
 
LoopMuxRegs.DPWMMUX.bit.DPWM1_FILTER_SEL =1; //CLA1 is providing input to DPWM1 
LoopMuxRegs.DPWMMUX.bit.DPWM2_FILTER_SEL =1; //CLA1 is providing input to DPWM2 
LoopMuxRegs.DPWMMUX.bit.DPWM2_SYNC_SEL = 1;  //DPWM1 is the master for DPWM2 
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}  

3.9 Current Loop Filter Configuration 
The filter takes the error signal from Front End and passes it through a 2-pole 2-zero digital filter which 
compensates the disturbance of the current loop. The filter needs to be initialized such that once powered up, 
the current loop will use the already well tuned control parameters to close the loop: 
 
void init_filter1(void) 
{ 

MiscAnalogRegs.CLKTRIM.bit.HFO_LN_FILTER_EN = 1; 
 
Filter1Regs.FILTERCTRL.bit.OUTPUT_MULT_SEL = 1; //PID output multiply with period 
Filter1Regs.FILTERCTRL.bit.OUTPUT_SCALE = 0; //no scale 
 
Filter1Regs.FILTERKICLPHI.bit.KI_CLAMP_HIGH = 0x7FFFF0; 
Filter1Regs.FILTERKICLPLO.bit.KI_CLAMP_LOW = 0x800010; 
 
Filter1Regs.FILTERYNCLPHI.all = 0x785000;//clamp to prevent CT from saturation 94% 
Filter1Regs.FILTERYNCLPLO.all = 0; 
 
Filter1Regs.FILTERCTRL.bit.FILTER_EN = 1; 
//enable OK here, because nothing will happen until DPWM and front end are globally enabled 

} 
 
In PWR026 PFC EVM, the well tuned filter parameters kp, ki, kd and alpha are stored in data flash. Upon power 
up, they are loaded from data flash to corresponding registers.  
 
void copy_configuration_to_registers(volatile struct FILTER_REGS *dest) 
{ 

//copy PFC configuration 
iv.vbus_voltage = pfc_config_in_ram.PFC_SETPOINT.VOUT_COMMAND +  

 pfc_config_in_ram.PFC_CAL.VOUT_CAL_OFFSET; 
iv.vbus_setpoint = ((Uint32)((iv.vbus_voltage * 4095) / VBUS_FULL_RANGE)); 
 
if(iv.supply_state >= STATE_PFC_ON) 
{ 
 iv.vbus_target = ((int32)((iv.vbus_voltage * 4095)/VBUS_FULL_RANGE)); 
} 

 
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_THRESH =  

 ((Uint32)(pfc_config_in_ram.PFC_SETPOINT.VOUT_OV_LIMIT * 127) / VBUS_FULL_RANGE); 
 
switching_frequency = pfc_config_in_ram.PFC_SETPOINT.FREQUENCY; 
 
//copy voltage loop gains 
iv.pis.kp                 = pfc_config_in_ram.PI_GAINS.KP; 
iv.pis.ki                 = pfc_config_in_ram.PI_GAINS.KI; 
iv.pis.kp_nl            = pfc_config_in_ram.PI_GAINS.KP_NL; 
iv.pis.ki_nl             = pfc_config_in_ram.PI_GAINS.KI_NL; 
iv.pis.nl_threshold  = (pfc_config_in_ram.PI_GAINS.NL_THRESHOLD << 12) / VBUS_FULL_RANGE; 
 
//copy current loop gains 
dest->COEFCONFIG.all       = pfc_config_in_ram.COEFCONFIG.all; 
dest->FILTERKPCOEF0.all = pfc_config_in_ram.FILTERKPCOEF0.all; 
dest->FILTERKPCOEF1.all = pfc_config_in_ram.FILTERKPCOEF1.all; 
dest->FILTERKICOEF0.all  = pfc_config_in_ram.FILTERKICOEF0.all; 
dest->FILTERKICOEF1.all  = pfc_config_in_ram.FILTERKICOEF1.all; 
dest->FILTERKDCOEF0.all = pfc_config_in_ram.FILTERKDCOEF0.all; 
dest->FILTERKDCOEF1.all = pfc_config_in_ram.FILTERKDCOEF1.all; 



SLUA713 – April, 2014 

14 Designing a UCD3138 Controlled Bridgeless PFC 

dest->FILTERKDALPHA.all= pfc_config_in_ram.FILTERKDALPHA.all; 
dest->FILTERNL0.all           = pfc_config_in_ram.FILTERNL0.all; 
dest->FILTERNL1.all = pfc_config_in_ram.FILTERNL1.all; 
dest->FILTERNL2.all = pfc_config_in_ram.FILTERNL2.all; 
dest->FILTERCTRL.bit.NL_MODE = fc_config_in_ram.FILTERMISC.bit.NL_MODE; 

 
FeCtrl1Regs.EADCCTRL.bit.AFE_GAIN = pfc_config_in_ram.FILTERMISC.bit.AFE_GAIN; 
FeCtrl2Regs.EADCCTRL.bit.AFE_GAIN = pfc_config_in_ram.FILTERMISC.bit.AFE_GAIN; 
Dpwm1Regs.DPWMCTRL2.bit.SAMPLE_TRIG1_OVERSAMPLE = 

 pfc_config_in_ram.FILTERMISC.bit.SAMPLE_TRIG1_OVERSAMPLE; 
Dpwm2Regs.DPWMCTRL2.bit.SAMPLE_TRIG1_OVERSAMPLE = 

 pfc_config_in_ram.FILTERMISC.bit.SAMPLE_TRIG1_OVERSAMPLE; 
}  

3.10 DPWM Configuration 
The output of the compensator is passed to a Digital PWM (DPWM) generator.  The DPWM has two outputs, 
which can be configured in many different ways to accommodate different power topologies. For bridgeless PFC 
with CT sensing, since we need to sense the middle point of CT output, only DPWMB is used and configured as 
Triangular mode. In this mode, the PWM pulse is centered in the middle of the period, rather than starting at one 
end or the other.  In Triangular Mode, only DPWM B is available. It is very easy to put a fixed sample trigger 
exactly in the center of the On-time, because the center of the on-time does not move in this mode. The following 
code example accommodates PWR026 PFC EVM, in which DPWM1B and DPWM2B are used and configured 
as Triangular mode.  
 
void init_dpwm1(void) // DPWM1B is used to drive 1st phase  
{ 

Dpwm1Regs.DPWMCTRL0.bit.PWM_EN = 0;  //disable everything 
 

Dpwm1Regs.DPWMCTRL1.bit.GPIO_A_EN = 1; //turn off DPWM1A for now 
Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; //turn off DPWM1B for now 

 
 // Enable CBC and Blanking windows 
Dpwm1Regs.DPWMCTRL0.bit.CBC_PWM_AB_EN = 1; // Enable cycle by cycle current limit. 
Dpwm1Regs.DPWMCTRL0.bit.BLANK_B_EN = 1;      // Enable blanking  
Dpwm1Regs.DPWMBLKBBEG.all = 0x0000; 
Dpwm1Regs.DPWMBLKBEND.all = 0x0500; 

 
Dpwm1Regs.DPWMFLTCTRL.bit.B_MAX_COUNT = 2; 
Dpwm1Regs.DPWMFLTCTRL.bit.ALL_FAULT_EN = 1; //enable this for OVP 
 
Dpwm1Regs.DPWMCTRL2.bit.SAMPLE_TRIG_1_EN = 1; //enable sample trigger1 
 
Dpwm1Regs.DPWMCTRL0.bit.PWM_MODE = 3; //triangular mode 
Dpwm1Regs.DPWMCTRL1.bit.EVENT_UP_SEL = 0; //update right away 
 
Dpwm1Regs.DPWMCTRL0.bit.CLA_EN = 1; 
Dpwm1Regs.DPWMCTRL0.bit.PWM_EN = 1; 
//enable OK here, because nothing will happen until DPWM and front end are globally enabled  

} 
 
void init_dpwm2(void) // DPWM2B is used to drive 2nd phase  
{ 

Dpwm2Regs.DPWMCTRL0.bit.PWM_EN = 0;  //disable everything 
 
Dpwm2Regs.DPWMCTRL1.bit.GPIO_A_EN = 1; //turn off DPWM2A for now 
Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; //turn off DPWM2B for now 
 
// Enable CBC and Blanking windows 
Dpwm2Regs.DPWMCTRL0.bit.CBC_PWM_AB_EN = 1; // Enable cycle by cycle current limit. 
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Dpwm2Regs.DPWMCTRL0.bit.BLANK_B_EN = 1;     // Enable blanking 
Dpwm2Regs.DPWMBLKBBEG.all = 0x0000; 
Dpwm2Regs.DPWMBLKBEND.all = 0x0500; 

 
Dpwm2Regs.DPWMFLTCTRL.bit.B_MAX_COUNT = 2; 
Dpwm2Regs.DPWMFLTCTRL.bit.ALL_FAULT_EN = 1; //enable this for OVP 
 
Dpwm2Regs.DPWMCTRL2.bit.SAMPLE_TRIG_1_EN = 1; //enable sample trigger1 

 
Dpwm2Regs.DPWMCTRL0.bit.PWM_MODE = 3; //triangular mode 
Dpwm2Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN = 0; //master mode 
Dpwm2Regs.DPWMCTRL1.bit.EVENT_UP_SEL = 0; //update right away 
Dpwm2Regs.DPWMCTRL2.bit.SAMPLE_TRIG1_MODE = 0;//triggered at sample trigger register value 

 
Dpwm2Regs.DPWMCTRL0.bit.CLA_EN = 1; 
Dpwm2Regs.DPWMCTRL0.bit.PWM_EN = 1; 
//enable OK here, because nothing will happen until DPWM and front end are globally enabled  

} 
 
void set_new_switching_frequency(void) 
{ 

iv.switching_period = (SWITCH_FREQ_NUMERATOR/switching_frequency) << 4; 
iv.period_times_2_14 = iv.switching_period << 14; 
iv.dither_max_period = (SWITCH_FREQ_NUMERATOR/(switching_frequency - 4)) << 4;  
iv.dither_min_period = (SWITCH_FREQ_NUMERATOR/(switching_frequency + 4)) << 4;  
iv.dither_step = ((iv.dither_max_period - iv.dither_min_period) << 14)/DITHER_PERIOD;  
//step for dither value 

 
Dpwm1Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency 
Dpwm2Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency 
Dpwm1Regs.DPWMSAMPTRIG1.all = (iv.switching_period >> 1) + (iv.sample_trigger_offset * 4); 
 // halfway plus some for driver delays 
Dpwm2Regs.DPWMSAMPTRIG1.all = (iv.switching_period >> 1) + (iv.sample_trigger_offset * 4); 
// halfway plus some for driver delays; 
Dpwm1Regs.DPWMPHASETRIG.all = 0; //0 delay for next phase 

} 
 
void init_dpwms(void) 
{ 

init_dpwm1(); 
init_dpwm2(); 
set_new_switching_frequency(); 

} 

4 System Protection 
 
System protection includes current protection and voltage protection. There are two levels of over voltage 
protection, one is implemented through software with a lower threshold, and the other is through an on chip 
analog comparator with a higher threshold. The current is protected as cycle-by-cycle based. 

4.1 Software OVP Protection 
This is pure software OVP protection. Vout is measured by ADC, the output of ADC is filtered for measurement 
noise immunity, and then compared with a programmable threshold. The PWM will shut down if the 
measurement is greater than threshold. ADC continues monitoring Vout, PWM will turn back on once Vout drops 
below its setpoint. This allows the PFC enters a hiccup mode. This will be useful for OVP not caused by 
hardware failure, but by sudden operation condition change, such as load transient. 
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inline void pfc_on_state_handler(void) 
{ 

if(iv.vin_squared_average > VAC_MIN_OFF_SQ_AVG) //if Vac above 80 volts 
{ 
 if(iv.adc_avg[VBUS_CHANNEL] > VBUS_DPWM_OFF_LEVEL)//if we've hit OVP 
 { 

turn_off_pfc(); 
iv.supply_state = STATE_PFC_HICCUP; 

 } 
} 
else 
{ 
 turn_off_pfc(); 
 init_miscellaneous(); 
 iv.supply_state = STATE_IDLE;   
} 

} 
 
inline void pfc_hiccup_state_handler(void) 
{ 

if(iv.adc_avg[VBUS_CHANNEL] < VBUS_DPWM_ON_LEVEL) //if OVP gone 
{ 
 LoopMuxRegs.GLBEN.all = 0x70F; //global enable all Front_ends and DPWMs 
 turn_on_pfc(); 
 iv.supply_state = STATE_PFC_ON; 
} 

} 

4.2 Hardware OVP Protection 
As shown in Figure 1, Vout is also connected to an on chip analog comparator COMP_F. the comparator is 
configured to turn off PWM automatically once get triggered. The comparator’s threshold is also programmable, 
and its threshold is usually set a little bit higher than the software OVP. This provides a fast OVP protection. If 
this OVP gets triggered, this usually means the PFC has serious hardware issue. For safety purpose, it will be 
latched there once shut down.   
 
Following is the code to configure this OVP: 
 
// Enable ACOMP-F pin and connect to DPWM-1 and DPWM-2 for Vbus OV protection 
FaultMuxRegs.DPWM1FAULTDET.bit.PWMB_ACOMP_F_EN = 1;  // Connect ACOMP-F to DPWM-1 
FaultMuxRegs.DPWM2FAULTDET.bit.PWMB_ACOMP_F_EN = 1;  // Connect ACOMP-F to DPWM-2  
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_SEL = 0;         // Use threshold register for trip 
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_POL = 1;        // Above thresh to trip 
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_THRESH = ((Uint32)(PFC_CONFIG_TEMP.PFC_SETPOINT.VOUT_OV_LIMIT * 
127) / VBUS_FULL_RANGE); 
 
 

4.3 Cycle by Cycle Current Protection 
The current is protected through on chip analog comparator COMP_D and COMP_E. It is cycle-by-cycle (CBC) 
based. Once the analog comparator is triggered, the PWM is chopped for the remaining cycle, but it will turn 
back on the next switching cycle. The code to configure the analog comparator for CBC is: 
 
 // Enable ACOMP-D pin and connect to current limit on DPWM-1 
 FaultMuxRegs.DPWM1CLIM.bit.ACOMP_D_EN = 1;  // Connect ACOMP-D to DPWM-1  
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_SEL = 0;       // Use threshold register for trip 
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_POL = 1;       //Above thresh to trip 
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_THRESH = OC_COMPARATOR; // Trip value  
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 // Enable ACOMP-E pin and connect to current limit on DPWM-2 
 FaultMuxRegs.DPWM2CLIM.bit.ACOMP_E_EN = 1;           // Connect ACOMP-E to DPWM-2 
 FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_E_SEL = 0;        // Use threshold register for trip 
 FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_E_POL = 1;      // Above thresh to trip 
 FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_E_THRESH = OC_COMPARATOR;  // Trip value  
 

5 Advanced Features 
 
The following lists some of the common used features for bridgeless PFC. For more advanced PFC features, 
please refer to [2].   

5.1 Frequency Dithering 
Frequency dithering refers to modulating the switching frequency to achieve a reduction in conducted EMI noise 
beyond the capability of the line filter. This total range from minimum to maximum frequency is defined as the 
dither magnitude, and is centered around the nominal switching frequency. The rate at which PWM traverses 
from one extreme to the other and back again is defined as the dither rate. Both these two parameters are 
programmable. 
  
inline void frequency_dithering(void) 
{ 

if(status_1.bits.dither_enabled == 1) 
{ 
 if(iv.dither_direction == 1) 
 { 

iv.period_times_2_14 = iv.period_times_2_14 + iv.dither_step; 
iv.switching_period = iv.period_times_2_14 >> 14; 
if(iv.switching_period > iv.dither_max_period) 
{ 
 iv.switching_period = iv.dither_max_period; 
 iv.dither_direction = 0; 
} 

 } 
 else  //if dither direction equalled 0 to start with 
 { 

iv.period_times_2_14 = iv.period_times_2_14 - iv.dither_step; 
iv.switching_period = iv.period_times_2_14 >> 14; 
 
if(iv.switching_period < iv.dither_min_period) 
{ 
 iv.switching_period = iv.dither_min_period; 
 iv.dither_direction = 1; 
} 

 } 
 Dpwm1Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency 
 Dpwm2Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency 
 

Dpwm1Regs.DPWMSAMPTRIG1.all = (iv.switching_period >> 1) + (iv.sample_trigger_offset * 4); 
 Dpwm2Regs.DPWMSAMPTRIG1.all = (iv.switching_period >> 1) + (iv.sample_trigger_offset * 4);  
} 

} 

5.2 AC Drop Detection 
The AC drop detection algorithm is shown in Figure 5. Vin is sampled every 100μs. Its measurement is 
compared with a predetermined threshold “AC_DROP_V_RECT_THRESHOLD”. If the consecutive samples 
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below this threshold greater than a predetermined number “AC_DROP_COUNT_MAX”, then AC drop is 
detected, a AC drop signal is send out to host through a GPIO. 
 
The threshold and number of consecutive samples will affect the sensitive of AC drop detection, they can be 
tuned base on requirement. 

 
Figure 5. AC Drop Detection 

 
The following is the code to implement this function: 
inline void check_ac_drop(void) 
{ 

if(iv.vin_filtered > AC_DROP_V_RECT_THRESHOLD) 
{ 
 iv.ac_drop_count = 0; //if over threshold, clear counter 
} 
else 
{ 
 iv.ac_drop_count++; 
 if(iv.ac_drop_count > AC_DROP_COUNT_MAX) 
 { 

iv.ac_drop = 1; 
iv.ac_drop_recovery_not_complete = 1; 
iv.vin_squared_for_ac_drop = 0; //clear for ac recovery detection 
MiscAnalogRegs.GLBIOVAL.bit.DPWM3B_IO_VALUE = 0; 
//pull down opto to signal AC drop to primary side 

 } 
} 
 
if(iv.vin_squared_for_ac_drop > AC_UNDROPPED_THRESHOLD)  
//if above ac not dropped threshold 
{  
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 iv.ac_drop = 0;  // we've got enough energy, clear AC drop warning 
 MiscAnalogRegs.GLBIOVAL.bit.DPWM3B_IO_VALUE = 1; 
 //turn off AC drop output signal also - inactive high 
} 

} 

5.3 X-CAP Reactive Current Compensation 
Every PFC has an electromagnetic interference (EMI) filter at the input end. The X capacitors of the EMI filter will 
cause the AC input current leading AC voltage, which will degrade power factor (PF). This situation gets worse at 
light-load and high-line. To increase the PF at light-load, we can force the inductor current delayed a little bit so 
that the total AC current will match the input voltage. This can be achieved by delay the current reference.  

 
//stuff for EMI CAP compensation  
int16 cir_buff[64]; //64buffer for vin 
int32 cir_buff_ptr; //pointer for spot in cir buff; 
int32 cir_buff_delay; //delay for waveform from circular buffer. 
 
inline void calculate_current_target_ct(void) 
{ 

int32 pointer; 
 
//for EMI CAP compensation 
iv.cir_buff[iv.cir_buff_ptr] = iv.vin_filtered; 
pointer = (iv.cir_buff_ptr - iv.cir_buff_delay) & 0x3f; //get pointer to delayed signal 
iv.cir_buff_ptr = (iv.cir_buff_ptr + 1) & 0x3f; 
 
iv.vbus_scaled = (iv.adc_avg[VBUS_CHANNEL] * VBUS_TO_VAC_SCALING) >> 15;  

 
iv.cla_output_filtered = (Uint32)Filter1Regs.FILTERYNREAD.bit.YN + iv.cla_output_filtered - (iv.cla_output_filtered >> 2); 

 
if(iv.vbus_scaled > iv.vin_filtered) 
{ 
 iv.numerator_1 = iv.vbus_scaled - iv.vin_filtered;  
} 
else 
{ 
 iv.numerator_1 = 0; 
} 
 
iv.numerator_2 = (iv.i_target_average * iv.numerator_1) >> 8;   
 
iv.numerator_3 = (iv.cir_buff[pointer] * iv.numerator_2);  
 
iv.denominator = ((iv.cla_output_filtered >> 6) * iv.vbus_scaled) >> 11;  
 
iv.i_target_sensed = (iv.numerator_3 / iv.denominator) + iv.i_target_offset;  
 
if(iv.i_target_sensed > 0x3ff) //saturate current target at maximum current 
{ 
 iv.i_target_sensed = 0x3ff; 
} 

} 
This is a traditional way to compensate the X-cap reactive current; reference [5] provides another novel method 
with better performance.   
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6 Firmware structure 
The firmware is divided as 3 major parts: background loop, standard interrupt loop and fast interrupt loop, as 
shown below: 

Background Loop
System initialization
Voltage feed forward
System monitoring
Dynamic system optimization
PMBus communication
UART transmit data

Standard interrupt
ADC measurement
State machine
Vrms calculation
Voltage loop calculation
Current reference calculation
AC drop detection
UART receive data
Frequency dithering

Fast interrupt
OVP

 
Figure 6. Firmware Structure 

6.1 Background Loop 
The firmware starts from function main(). In this function, after the system initialization, it goes to an infinite loop. 
All the non time critical tasks are put in this loop, it includes: 
 

 Calculate voltage feed forward 
 System monitoring 
 Dynamic system optimization  
 PMBus communication 
 UART transmit data  
 

User can always add any non time critical functions in this loop 
 
void main() 
{ 

MiscAnalogRegs.IOMUX.all = 0; //enable JTAG 
look_for_interrupted_dflash_erase(); //Check to see if the last DFLASH erase was interrupted 
pmbus_write_restore_default_all(); //load PFC configuration from data flash 
init_miscellaneous(); 
init_adc_polled(); 
init_uart(); 
init_front_ends(); 
init_dpwms(); 
init_filters(); 
init_loop_mux(); 
init_fault_mux(); 
init_timer_interrupt(); 
init_pmbus(); 
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string_out_0("\033[2J"); //clear screen 
 
for(;;) 
{ 
 pmbus_handler(); 
  
 voltage_feed_forward(); 
 
 pmbus_handler(); 
 
 system_monitoring(); 
 
 pmbus_handler(); 
 
 if(iv.supply_state == STATE_PFC_ON) 
 { 

dynamic_system_optimization(); //change compensation based on Vin 
 }   
 
 pmbus_handler(); 
 
 if (erase_segment_counter > 0) 
 { 

erase_task(); //  Handle the DFlash segment erases 
 } 
 
 pmbus_handler(); 
 
 if(uart_tx_timeout >= UART_TX_TIME) 
 { 

output_primary_secondary_message(); 
 } 
 else 
 { 

process_uart_rx_data(); 
 } 
} 

} 

6.2 Standard Interrupt Loop (IRQ) 
Standard interrupt loop is triggered by a timer at every 20μs. It is used to handle all the time critical tasks. It 
includes: 
 

 ADC measurements 
 PFC State machine 
 Vin_rms calculation 
 Voltage loop calculation 
 Current reference calculation 
 Vin drop detection 
 UART receive data 
 Frequency dithering 

 
However, to handle all these tasks in 20μs will cause interrupt overflow. To deal with this issue, the tasks 
distribution state machine is used to handle different task at different time interval.  
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6.2.1 Tasks Distribution State Machine 
void standard_interrupt(void) 
{ 

poll_adc(); 
rectify_vac(); 
calculate_current_target_ct(); 
 
switch(iv.interrupt_state)  
{ 
 case I_STATE_1 : 
  handle_voltage_loop(); 
  iv.interrupt_state = I_STATE_2; 
  break; 
 
 case I_STATE_2 : 
  half_cycle_processing(); 
  iv.interrupt_state = I_STATE_3; 
  break; 
 
 case I_STATE_3 : 
  check_ac_drop(); 
  iv.interrupt_state = I_STATE_4; 
  break; 
 
 case I_STATE_4 : 
  uart_receive_data(); 
  iv.interrupt_state = I_STATE_5; 
  break; 
 
 case I_STATE_5 : 
  supply_state_handler(); //run PFC state machine 
   
  frequency_dithering();       
  
  iv.interrupt_state = I_STATE_1; 
  break; 
 
 default: //if it's in an illegal state 
  iv.interrupt_state = I_STATE_1; //start it up again 
  break; 
}    
TimerRegs.T16PWM0CMPCTRL.all = 3; //clear interrupt bit by a read/write. 

} 

6.2.2 PFC State Machine 
PFC state machine is only one of the tasks in standard interrupt, it is called every 100μs. A typical PFC state 
machine is shown below: 
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Figure 7. PFC State Machine 

 
As soon as Vin is greater than 85V, the relay close and PFC is starting up. A 100ms delay is added after relay 
close to deal with the relay bouncing issue. After that, PFC will gradually ramp up its output voltage until Vout 
reaches its setpoint. At this point, PFC enters its final regulation state and will stay there until some abnormal 
conditions occurs, such as Vout over voltage or Vin under voltage.  
 
inline void supply_state_handler(void) 
{ 

switch(iv.supply_state)  
{ 
 case STATE_IDLE : 
  idle_state_handler(); 
  break; 
 
 case STATE_RELAY_BOUNCE: 
  relay_bounce_state_handler(); 
  break; 
 
 case STATE_RAMP_UP : 
  ramp_up_state_handler(); 
  break; 
 
 case STATE_PFC_ON: 
  pfc_on_state_handler();  
  break; 
 
 case STATE_PFC_HICCUP: 
  pfc_hiccup_state_handler(); 
  break; 
 
 case STATE_PFC_SHUT_DOWN: 
  pfc_shut_down_state_handler(); 
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  break; 
 
 default: 
  break; 
} 

} 

6.3 Fast Interrupt (FIQ) 
The FIQ is triggered by the comparator on AD06 (Comparator F).  Since DPWM1B and DPWM2B are already 
turned off to protect the PFC, what the FIQ does is only to report an OVP failure through a GPIO and set the 
PFC state into a shut down latch state. The customer can always add more time critical tasks in function: 
 
#pragma INTERRUPT(fast_interrupt,FIQ) 
void fast_interrupt(void) 
{ 

volatile int32 temp; 
 
turn_off_pfc(); 
 
iv.supply_state = STATE_PFC_SHUT_DOWN; 
 
temp = FaultMuxRegs.FAULTMUXINTSTAT.all;//read to clear the interrupt flag 

} 

7 Graphical User Interface (GUI) 
 
A graphical user interface (GUI) named “Fusion Digital Power Designer” is provided by Texas Instruments to 
facilitate UCD3138 controlled power converter designed. By talking to the GUI through PMBus, the PFC 
operating status can be monitored, its operation setpoints can be configured, and the control loop can be tuned 
on the fly.  
 
The GUI is deigned to support the most popular topologies, including PFC. Different topology will have different 
interface. A setup id is used in the PFC firmware to tell the GUI that this is a PFC, so that when the GUI starts, it 
will open a interface accommodate to a PFC. In addition, the setup id specific the PFC topology (single phase, 
interleaved or bridgeless), and it also includes the hardware modules used in PFC current loop: which front end, 
which CLA and which DPWM are used. The following setup id is used in the bridgeless PFC EVM PWR026: 
 
#define SETUP_ID        "VERSION1|PFC002" 
 
In this case, the “PFC002” is defined as bridgeless PFC, with FE1, FE2, CLA1, DPWM1, DPWM2 consist the 
current loop. 
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Figure 8. Monitor PFC Operating Status 

 

 
Figure 9. Configure PFC Operation Setpoints 
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Figure 10. Tune PFC Control Loop 

The current and voltage loop can be tuned through the GUI. As shown in Figure 10, This GUI provides interface 
to tune the current and voltage control loop compensator, it also shown the loop bode plot, as well as bandwidth, 
phase margin, and gain margin. The loop tuning is much simplified. For details of the GUI, please refer to [6]. 

 

8 PFC Tuning and THD Reduction  
 
PFC current loop tuning can be a time consuming and challenging task for the PFC design engineer. It requires 
the current waveform not only to be stable, but also to be smooth with very low THD and high PF. It gets more 
and more challenging with the ever increasing THD and PF requirements. The digital controller provides more 
flexibility and additional ways to achieve these increasing performance requirements. To make this task easier TI 
provides a GUI that greatly simplifies the work involved in these tasks. Additionally, application note [7] also 
provides a step by step guide of how to tune the current loop of a UCD3138 controlled PFC, it also summarizes 
some of the most common but effective methods to reduce the current distortion in a digitally controlled PFC.  

Reference: 
 
[1] UCD3138 datasheet 
[2] TI application note: Designing a UCD3138 Controlled Single Phase PFC 
[3] TI application note: Designing a UCD3138 Controlled Interleaved PFC 
[4] SLUU995: UCD3138 Digital Power Peripherals Programmer’s Manual 
[5] TI application note: A Novel EMI Filter X-Cap Reactive Current Compensation Method to increase PF 
[6] TI user guide: SLUA676 
[7] TI application note: UCD3138 PFC Tuning. 
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