
 Application Report
 SLUA713 – April, 2014

1

Designing a UCD3138 Controlled Bridgeless PFC

Bosheng Sun High Performance Isolated

ABSTRACT

The UCD3138[1] is a digital power supply controller from Texas Instruments offering superior levels of
integration and performance in a single chip solution. The flexible nature of the UCD3138 makes it suitable for a
wide variety of power conversion applications. In addition, multiple peripherals inside the device have been
specifically optimized to enhance the performance of ac/dc applications such as a power factor correction (PFC).

The UCD3138 is a fully programmable solution offering customers complete control of their application.
However, the use of digital controllers in PFC design brings new challenges to many analog designers in their
effort to change the design from the analog space to its new digital environment. This application note gives a
step by step guidance of how to design a UCD3138 controlled bridgeless PFC. It covers the hardware interface,
voltage loop and current loop implementation, protection, firmware structure, internal state machines, as well as
some advanced features. Finally, a graphical user interface (GUI) and how to tune a new designed PFC are
presented. For single phase or interleaved PFC design, please refer to application note [2] and [3].

Contents

1 Overview .. 3

1.1 Block Diagram .. 3
1.2 Signal Conditioning and Interface ... 4

2 Voltage Loop .. 4
2.1 Overview ... 4
2.2 Firmware Implementation of PI Controller .. 4

3 Current Loop .. 6
3.1 Overview ... 6
3.2 Multiplier Gain Km ... 6
3.3 Vin Sensing and Rectification ... 7
3.4 Calculate Vin_rms

2 ... 9
3.5 Calculate Vin Feed Forward ... 9
3.6 Calculate Average Current Reference .. 10
3.7 Translate average reference to instantaneous reference ... 10
3.8 Current Feed Back Front End Configuration .. 12
3.9 Current Loop Filter Configuration ... 13
3.10 DPWM Configuration .. 14

4 System Protection ... 15
4.1 Software OVP Protection .. 15
4.2 Hardware OVP Protection .. 16
4.3 Cycle by Cycle Current Protection .. 16

5 Advanced Features ... 17
5.1 Frequency Dithering ... 17
5.2 AC Drop Detection .. 17
5.3 X-CAP Reactive Current Compensation ... 19

SLUA713 – April, 2014

2 Designing a UCD3138 Controlled Bridgeless PFC

6 Firmware structure .. 20
6.1 Background Loop .. 20
6.2 Standard Interrupt Loop (IRQ) .. 21

6.2.1 Tasks Distribution State Machine ... 22
6.2.2 PFC State Machine .. 22

6.3 Fast Interrupt (FIQ) ... 24
7 Graphical User Interface (GUI) ... 24
8 PFC Tuning and THD Reduction .. 26
Reference: ... 26

Figures

Figure 1. UCD3138 controlled bridgeless PFC block diagram ... 3
Figure 2. Current loop .. 6
Figure 3. PWM waveform for bridgeless PFC .. 7
Figure 4a. Sensed current waveform at continuous conduction mode .. 11
Figure 4b. Sensed current waveform at discontinuous conduction mode 11
Figure 5. AC Drop Detection .. 18
Figure 6. Firmware Structure ... 20
Figure 7. PFC State Machine ... 23
Figure 8. Monitor PFC Operating Status .. 25
Figure 9. Configure PFC Operation Setpoints ... 25
Figure 10. Tune PFC Control Loop ... 26

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 3

1 Overview

1.1 Block Diagram

Vs

 Fusion Power Peripheral

DPWM2

AD_08

COMP_E

RL

Vbus

Q1

D1

Cb

COMP_D

Rs1

EMI Filter
& Inrush

Relay

Gate
Driver

L1Iin

L2 D2

Q2

EAP1

DPWM1

Signal
Conditioning

Signal
Conditioning

Vin

PI
(Gv)

+ +

-

-

UCD3138

Vref

Vb

Ev

Iin

CLA1
(Gc)

Calculate
Vrms

Calculate
1/Vrms2

Iref

A

B

c

Cycle by cycle limit

+
Ui

Vrms Conditioning
&

Rectification

Km

Signal
Conditioning

Signal
Conditioning

I_CT1 I_CT2DPWM1B DPWM2B

DPWM1B

DPWM2B

Vin_l Vbus_sen

Vbus_sen

Vin_n

I_CT1
I_CT2EAP2

UART
Interface

Vin_lAD_07

Cycle by cycle limit

Vin_n

Vbus_ov

AD_03

COMP_FOVP

Vbus_ov

PMBus
Interface

FE1

FE2

-

I_CT2

I_CT1

Iin

D3
D4

Figure 1. UCD3138 controlled bridgeless PFC block diagram

SLUA713 – April, 2014

4 Designing a UCD3138 Controlled Bridgeless PFC

Figure 1 is an example of block diagram of a bridgeless PFC controlled by UCD3138. The input voltage Vin line
and neutral are sensed separately by two ADC channels AD_07 and AD_08. PFC output voltage Vbus_sen is
sensed by another ADC channel AD_03. In addition, a separate Vout sensing circuit is connect to an on chip
analog comparator COMP_F for over voltage protection (OVP). Two current transformers are used to sense the
MOSFET instantaneous current and their output I_CT1 and I_CT2 are connected to EAP1 and EAP2
respectively for current loop control. In addition, I_CT1 and I_CT2 are also connected to two on chip analog
comparators COMP_E and COMP_D for cycle-by-cycle current protection. The control loop generates two PWM
outputs DPWM1B and DPWM2B to drive the MOSFETs through gate driver.

An average current mode control is used for input current regulation: current reference is calculated based on
Vin, voltage loop output and voltage feed forward. This averaged current reference is then translated to
instantaneous signal as if they were sensed at the middle of CT output. The translated reference is then
compared to the middle point value of CT output, the error goes through a 2-pole 2-zero digital compensator
CLA1, a PWM signal is generated based on the compensator output to control the PFC.

It needs to be mentioned here that the above configuration accommodates with TI’s PFC evaluation board
PWR026. It is not necessary to follow this configuration. For example, I_CT1/I_CT2 can be connected to a
different EPA channel, a different CLA can be used for compensation, and PFC can be driven by different
DPWM output as well. However, it is recommended using the similar configuration as PWR026, so that most of
the PWR026 source code can be reused and the design period can be much shorter.

1.2 Signal Conditioning and Interface
For each input signal to the UCD3138, its magnitude should accommodate the measurement range of the
UCD3138. In the UCD3138, the ADC measurement range is 0 – 2.5V, the error ADC measurement range is 0 -
1.6V, the analog comparator range is 0 – 2.5V. On the other hand, to have the best signal-to-noise ratio, the
input signal should be as big as possible. For these reason, the signal conditioning for each input signal should
follow the subsequent guidelines.

For Vin, the voltage divider:
max_*2

5.2

in

vin
V

K

For Vout, the voltage divider:
max_

5.2

out
vout V

K

For current transformer: the maximum middle point of I_CT1 and I_CT2 should less than 1.6V, and the maximum
peak value should less than 2.5V.

2 Voltage Loop

2.1 Overview
Since the speed constraints on the voltage loop bandwidth are typically low, it can easily be implemented by
pure firmware. As shown in Figure 1. Vout_sen is sensed by a 12-bit ADC. An error signal is calculated based on
the target output voltage and then processed by a proportional-integral (PI) controller. The output of this PI
controller will take part in the current reference calculation.

To meet the load transient response requirement, a non-linear PI gain is used. When the voltage error exceeds a
threshold, a larger PI gain is used.

2.2 Firmware Implementation of PI Controller
Following is the code example for this nonlinear PI controller. Two different gains are used in this example. If the
load transient response is still not met, a third or forth gain can be added.

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 5

All the codes in this application note are just examples of how to implement a specific function, it does not
contain the variable definitions and how the function gets called. Although plenty of comments are provided to
explain how it works, there may still exist unclearness. To better understand the code, please refer to PWR026
PFC EVM source code for details.

inline int32 proportional_integral(int32 error) //error is difference between ADC value and reference
{

int32 output, steady_state_error;

if(abs(error) < iv.pis.nl_threshold) //if error in steady state range
{
 steady_state_error = iv.vbus_target - (iv.vbus_filtered >> 6);
 iv.pis.p = iv.pis.kp * steady_state_error;
 iv.pis.i = iv.pis.i + (iv.pis.ki * steady_state_error);
}
else
{ //non-linear gain for Voltage loop
 iv.pis.p = iv.pis.kp_nl * error;//Q15*Q12
 iv.pis.i = iv.pis.i + (iv.pis.ki_nl * error);
}

if(iv.ac_drop_recovery_not_complete)
{
 if(((error < 0) && (iv.pis.i > 0)) || ((error > 0) && (iv.pis.i < 0)))
 {

iv.pis.i = 0; //reset the integral just when AC voltage has restored
iv.ac_drop_recovery_not_complete = 0; //AC drop recovery completed

 }
}

if(iv.pis.i > PI_I_HIGH_LIMIT) //clamp integrator
{
 iv.pis.i = PI_I_HIGH_LIMIT;
}
else if (iv.pis.i < PI_I_LOW_LIMIT)
{
 iv.pis.i = PI_I_LOW_LIMIT;
}

output = (iv.pis.p + iv.pis.i) >> 12; //scale for Q15 from Q15 coefficients and Q12 from ADC

if(output > PI_OUTPUT_HIGH_LIMIT) //clamp PI output
{
 output = PI_OUTPUT_HIGH_LIMIT;
}
else if (output < PI_OUTPUT_LOW_LIMIT)
{
 output = PI_OUTPUT_LOW_LIMIT;
}

iv.pis.output = output;
return output;

}

SLUA713 – April, 2014

6 Designing a UCD3138 Controlled Bridgeless PFC

3 Current Loop

3.1 Overview
The PFC current loop is used to regulate the inductor current so that the input current will follow the input
voltage. To do this, the current reference, which takes the same shape of input voltage, needs to be calculated
first. For average current mode controlled PFC, the average current reference is calculated as:

Iref = Km * A * B * C (1)

while:
Km: multiplier gain
A: Voltage loop output
B: 1/Vin_rms

2

C: sensed input voltage Kvin*Vin

However, for bridgeless with CT sensing, because the current transformer is placed right above the switch, it
only senses the switch current, which is only the rising part of the inductor current. So the calculated average
current reference needs to be translated to instantaneous current signal as if it is sensed by CT.

Once the current reference is calculated, the corresponding function blocks in the chip need to be configured to
close the loop. There are 3 major hardware blocks for the current loop: Front End, Filter, and DPWM. These
blocks will be introduced one by one.

Figure 2. Current loop

3.2 Multiplier Gain Km
The multiplier gain Km is defined as follows:
From (1),

2/))((rmsvininvmmref VKVUKBCAKI (2)

where,

Uv : voltage loop output
Vrms : RMS voltage of digitized input voltage
Kvin : Input voltage divider

For digital implementation, the voltage signals in (2) are digitized, a suitable fixed-point notation is chosen so that
each signal is normalized with the maximum value equals to 1. For maximum power output, at minimum Vin, the
voltage controller output and the reference current command will be at their maximum values, Uvmax and Iref_max

respectively. Since Iref and Uv are calculated in per unit, their maximum values are, Iref_max = 1, Uvmax = 1.
Therefore,

vinpk

rms

vvinpk

rms
ref KV

V

UKV

V
IKm

)min(

2
(min)

max)min(

2
(min)

max_][(3)

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 7

For sine wave input, this can be written as,

)min(
)min(

2
)min(

2

5.0
2 pkvin

vinpk

pkvin
m VK

KV

VK
K (4)

3.3 Vin Sensing and Rectification
The input AC voltage is measured by separately sensing the line and neutral voltages with referencing to internal
power ground. By comparing the sensed line and neutral signals, the firmware will know whether this is a
positive half-cycle or a negative half-cycle. During a positive half-cycle, the first DC/DC boost circuit, L1-Q1-D1,
is active and the boost current returns to AC neutral through diode D4. During a negative half-cycle, the second
DC/DC boost circuit, L2-Q2-D2, is active and the boost current return to AC line through diode D3.

A bridgeless PFC essentially consists of two-phase boost circuits, but only one phase is active at any moment.
Compared with conventional single phase PFC using the same power devices, the switching losses of a
bridgeless PFC and a single phase PFC should be the same. However, bridgeless PFC current passes only one
slow diode (D4 for positive half-cycle and D3 for negative half-cycle) instead of two at any time. Thus, the
efficiency improvement relies on the conduction loss difference between one diode and two. Moreover, the
bridgeless PFC efficiency can be further improved by turning the inactive switch fully on. For example, during a
positive cycle, while Q1 is controlled by the PWM signal, Q2 can be fully turned on. Since the voltage drop on
MOSFET Q2 may be lower than diode D4 when the flowing current is below certain a value, the return current
partially or totally flows through L1-D1-RL-Q2-L2, and then back to AC source. The conduction loss is decreased
and the circuit efficiency can be improved, especially at light load. Similarly, during a negative cycle, Q1 is fully
turned on while Q2 is switching. The control waveform for Q1 and Q2 is shown in Figure 3.

Figure 3. PWM waveform for bridgeless PFC

The following is the code of this mechanism for bridgeless PFC:

inline void rectify_vac(void)
{

if(iv.adc_raw[AC_L_CHANNEL] > iv.adc_raw[AC_N_CHANNEL]) //this is the cycle for line
{
 iv.vin_raw = iv.adc_raw[AC_L_CHANNEL] - iv.adc_raw[AC_N_CHANNEL];
 iv.positive = 1; //tell other functions that this is positive cycle

SLUA713 – April, 2014

8 Designing a UCD3138 Controlled Bridgeless PFC

 Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0; //first turn off line
 Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; //then turn off neutral
 FeCtrl1Regs.EADCDAC.bit.DAC_VALUE = iv.i_target_sensed << 4; //use EADC1
 LoopMuxRegs.FILTERMUX.bit.FILTER1_FE_SEL = 1; //use EADC1 to drive filter 1

 if(iv.pwm_on == 1)
 {

Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 0; //now turn on line PWM

//if it is really positive cycle, not a glitch, turn on the 2nd phase switch
if(iv.vin_filtered > 80)
{
 Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_VAL = 1;
}
else
{
 Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0;
}

 }
 else
 {

Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0; //neutral drive low
Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; //now disable line PWM

 }
}
else //cycle for neutral
{
 iv.vin_raw = iv.adc_raw[AC_N_CHANNEL] - iv.adc_raw[AC_L_CHANNEL];
 iv.positive = 0; //tell other functions that this is negative cycle

 Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0; //first turn off neutral
 Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; //then turn off line PWM
 FeCtrl2Regs.EADCDAC.bit.DAC_VALUE = iv.i_target_sensed << 4; //use EADC2
 LoopMuxRegs.FILTERMUX.bit.FILTER1_FE_SEL = 2; //use EADC2 to drive filter 1

 if(iv.pwm_on == 1)
 {

Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_EN = 0; //now turn on neutral PWM

//if it is really negative cycle, not a glitch, turn on the 1st phase switch
if(iv.vin_filtered > 80)
{
 Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_VAL = 1;
}
else
{
 Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0;
}

}
 else
 {

Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_VAL = 0; //line drive low
Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; //now disable neutral PWM

 }
}
iv.vin_sum = iv.vin_raw + iv.vin_sum - (iv.vin_sum >> 2);
iv.vin_filtered = iv.vin_sum >> 2; //filtered vin measurement

}

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 9

3.4 Calculate Vin_rms
2

The RMS value is defined as:

 acT

ac
rms dttV

T
V

0

22)(*
1

 (5)

In discrete format:

N

nV
Vrms

2

2)((6)

Vin is sampled every 20μs, then the sampled Vin is squared and accumulated in each AC cycle. The RMS value
is calculated by divide the number of accumulator.

First, calculate V(n)2

iv.vin_squared = (iv.vin_filtered * iv.vin_filtered) >> 9;

Then, calculate sum

//sum V(n)2 for the negative cycle
inline void accumulate_negative_cycle_values()
{

iv.negative_vin_squared_accumulate = iv.vin_squared + iv.negative_vin_squared_accumulate;
}

// sum V(n)2 for the positive cycle
inline void accumulate_positive_cycle_values()
{

iv.positive_vin_squared_accumulate = iv.vin_squared + v.positive_vin_squared_accumulate;
}

Finally, calculate Vin_rms2

//calculate Vin_rms2 for the negative cycle
inline void store_negative_cycle_values(void)
{

iv.vin_squared_average = iv.negative_vin_squared_accumulate / iv.negative_cycle_counter;
iv.vin_squared_for_ac_drop = iv.vin_squared_average;

}

//calculate Vin_rms2 for the positive cycle
inline void store_positive_cycle_values(void)
{

iv.vin_squared_average = iv.positive_vin_squared_accumulate / iv.positive_cycle_counter;
iv.vin_squared_for_ac_drop = iv.vin_squared_average;

}

3.5 Calculate Vin Feed Forward
The following function is used to calculate voltage feed forward Km * B

Km: multiplier gain
B: 1/Vin_rms2

inline void voltage_feed_forward(void) //calculate Km/Vrms^2
{

if(iv.vin_squared_average < VAC_MIN_OFF_SQ_AVG) //if VAC is below normal operation range

SLUA713 – April, 2014

10 Designing a UCD3138 Controlled Bridgeless PFC

{
 iv.vff_multiplier = K_FEED_FORWARD / VAC_MIN_OFF_SQ_AVG;

 //Q30/Q15 = Q15 limit to minimum operating voltage to avoid overflow
}
else //here if vac is within range
{
 if(abs(iv.vin_squared_average –
 (iv.vin_squared_slow_average >> VRECT_SQUARED_SLOW_AVERAGE_SHIFT)) >

 (iv.vin_squared_slow_average >> (VRECT_SQUARED_SLOW_AVERAGE_SHIFT + 4)))
 //compares difference between fast and slow VAC values to a percentage of the slow value.
 //instead of multiplying the slow value times a constant, it uses a shift. So a shift of +4, for
 //example = 1/16 or .0625% of the slow value.
 //so the code below is executed if the difference between fast and slow values is greater
 //than the percentage. It uses the fast value.
 {

iv.vff_multiplier = K_FEED_FORWARD / iv.vin_squared_average;
 }
 else //here if the fast and slow values are close - use the slow value.
 {

if(iv.vin_squared_slow_average < (VAC_MIN_OFF_SQ_AVG <<
 VRECT_SQUARED_SLOW_AVERAGE_SHIFT))

{
 iv.vff_multiplier = K_FEED_FORWARD / AC_MIN_OFF_SQ_AVG;
 //Q30/Q15 limit to minimum operating voltage to avoid overflow
}
else
{
 iv.vff_multiplier = K_FEED_FORWARD / (iv.vin_squared_slow_average >>

 VRECT_SQUARED_SLOW_AVERAGE_SHIFT);
}

 }
}

}

3.6 Calculate Average Current Reference
Now we got A, B, C, we can calculate the average current reference. This is done in 2 functions:

First, calculate Km * A * B:

inline void handle_voltage_loop(void)
{

iv.i_target_average = ((iv.vff_multiplier >> 5) * proportional_integral(iv.vbus_target - v.adc_avg[VBUS_CHANNEL])) >> 11;
}

Then, calculate Km * A * B * C, which is the average current reference. As mentioned at the 1.1, this average
current reference needs to be translated to instantaneous current as if it is sensed at the middle point of CT
output.

3.7 Translate average reference to instantaneous reference
For PFC with CT sensing, because the current transformer is placed right above the switch, it only senses the
switch current, which is only the rising part of the inductor current. For digital control implementation, this switch
current signal is measured at the middle of PWM on time Ta. It is an instantaneous value, represented as Isense in
Figures 4a and 4b below. The measured switching current Isense is equal to the average PFC inductor current
only when the current is continuous. When the current becomes discontinuous, Isense is not equal to the average
PFC inductor current any more. In order to compute the inductor average current, the relationship between the
middle point sensing current Isense and the average inductor current over a switching period should be derived
and be applicable for both continuous conduction mode (CCM) and discontinuous conduction mode (DCM).

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 11

Tb

T

Isense

Ta

Figure 4a. Sensed current waveform at continuous conduction mode

Figure 4b. Sensed current waveform at discontinuous conduction mode

For a boost-type converter in steady state operation, the volt-second of the boost inductor should maintain
balance in each switching period:

Ta * Vin = Tb * (VO – Vin) (7)

Here Ta is the current rising time (PWM on time), Tb is the current falling time (PWM off time), Vin is input voltage,
and Vo is output voltage, assuming all power devices are ideal.

From Figures above, we can calculate the inductor average current Iave in terms of Isense:

T

TT
II ba

senseave

 * (8)

Where T is the switching period.

Combine (7) and (8) together, we get:

oa

inoave
sense VT

VVTI
I

*

**
 (9)

Through Equation 9, the average inductor current Iave is interpreted in an instantaneous switch current Isense. Iave
is the desired current and Isense is the current reference for current control loop. The real instantaneous switch
current is sensed and compared with this reference, the error is sent to a fast error ADC (EAP), and finally the
digitized error signal is sent to a digital compensator to close the current control loop.

inline void calculate_current_target_ct(void)
{

int32 pointer;

//for EMI CAP compensation
iv.cir_buff[iv.cir_buff_ptr] = iv.vin_filtered;
pointer = (iv.cir_buff_ptr - iv.cir_buff_delay) & 0x3f; //get pointer to delayed signal

SLUA713 – April, 2014

12 Designing a UCD3138 Controlled Bridgeless PFC

iv.cir_buff_ptr = (iv.cir_buff_ptr + 1) & 0x3f;

iv.vbus_scaled = (iv.adc_avg[VBUS_CHANNEL] * VBUS_TO_VAC_SCALING) >> 15;

iv.cla_output_filtered = (Uint32)Filter1Regs.FILTERYNREAD.bit.YN + iv.cla_output_filtered - (iv.cla_output_filtered >> 2);

if(iv.vbus_scaled > iv.vin_filtered)
{
 iv.numerator_1 = iv.vbus_scaled - iv.vin_filtered;
}
else
{
 iv.numerator_1 = 0;
}

iv.numerator_2 = (iv.i_target_average * iv.numerator_1) >> 8;

iv.numerator_3 = (iv.cir_buff[pointer] * iv.numerator_2);

iv.denominator = ((iv.cla_output_filtered >> 6) * iv.vbus_scaled) >> 11;

iv.i_target_sensed = (iv.numerator_3 / iv.denominator) + iv.i_target_offset;

if(iv.i_target_sensed > 0x3ff) //saturate current target at maximum current
{
 iv.i_target_sensed = 0x3ff;
}

}

3.8 Current Feed Back Front End Configuration
The Front End measures the difference between the current feed back signal and the current reference
calculated in 3.7. It passes this digital error information to the filter. Those need to be configured are: which front
end is used for current feedback signal sensing, what is the AFE_GAIN, which CLA filter is used and which
DPWM module is used. UCD3138 is very flexible, the front end, filter and DPWM are multi-to-multi connection.
The following code example is based on the PWR026 PFC EVM hardware: it uses Frond End1, Frond End2,
CLA1, DPWM1 and DPWM2. Other configurations are also possible. For detail of how to configure UCD3138
digital peripherals, please refer to programmer manual [4].

void init_front_end1(void) //for CT1 sensing
{

FeCtrl1Regs.EADCDAC.bit.DAC_VALUE = 0;
}

void init_front_end2(void) //for CT2 sensing
{

FeCtrl2Regs.EADCDAC.bit.DAC_VALUE = 0;
}

void init_loop_mux(void)
{

LoopMuxRegs.SAMPTRIGCTRL.bit.FE1_TRIG_DPWM1_EN = 1; //Use DPWM1 sample trigger for FE1
LoopMuxRegs.SAMPTRIGCTRL.bit.FE2_TRIG_DPWM2_EN = 1; //Use DPWM2 sample trigger for FE2

LoopMuxRegs.FILTERMUX.bit.FILTER1_PER_SEL = 1;//CLA1 switching period select from DPWM1

LoopMuxRegs.DPWMMUX.bit.DPWM1_FILTER_SEL =1; //CLA1 is providing input to DPWM1
LoopMuxRegs.DPWMMUX.bit.DPWM2_FILTER_SEL =1; //CLA1 is providing input to DPWM2
LoopMuxRegs.DPWMMUX.bit.DPWM2_SYNC_SEL = 1; //DPWM1 is the master for DPWM2

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 13

}

3.9 Current Loop Filter Configuration
The filter takes the error signal from Front End and passes it through a 2-pole 2-zero digital filter which
compensates the disturbance of the current loop. The filter needs to be initialized such that once powered up,
the current loop will use the already well tuned control parameters to close the loop:

void init_filter1(void)
{

MiscAnalogRegs.CLKTRIM.bit.HFO_LN_FILTER_EN = 1;

Filter1Regs.FILTERCTRL.bit.OUTPUT_MULT_SEL = 1; //PID output multiply with period
Filter1Regs.FILTERCTRL.bit.OUTPUT_SCALE = 0; //no scale

Filter1Regs.FILTERKICLPHI.bit.KI_CLAMP_HIGH = 0x7FFFF0;
Filter1Regs.FILTERKICLPLO.bit.KI_CLAMP_LOW = 0x800010;

Filter1Regs.FILTERYNCLPHI.all = 0x785000;//clamp to prevent CT from saturation 94%
Filter1Regs.FILTERYNCLPLO.all = 0;

Filter1Regs.FILTERCTRL.bit.FILTER_EN = 1;
//enable OK here, because nothing will happen until DPWM and front end are globally enabled

}

In PWR026 PFC EVM, the well tuned filter parameters kp, ki, kd and alpha are stored in data flash. Upon power
up, they are loaded from data flash to corresponding registers.

void copy_configuration_to_registers(volatile struct FILTER_REGS *dest)
{

//copy PFC configuration
iv.vbus_voltage = pfc_config_in_ram.PFC_SETPOINT.VOUT_COMMAND +

 pfc_config_in_ram.PFC_CAL.VOUT_CAL_OFFSET;
iv.vbus_setpoint = ((Uint32)((iv.vbus_voltage * 4095) / VBUS_FULL_RANGE));

if(iv.supply_state >= STATE_PFC_ON)
{
 iv.vbus_target = ((int32)((iv.vbus_voltage * 4095)/VBUS_FULL_RANGE));
}

FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_THRESH =

 ((Uint32)(pfc_config_in_ram.PFC_SETPOINT.VOUT_OV_LIMIT * 127) / VBUS_FULL_RANGE);

switching_frequency = pfc_config_in_ram.PFC_SETPOINT.FREQUENCY;

//copy voltage loop gains
iv.pis.kp = pfc_config_in_ram.PI_GAINS.KP;
iv.pis.ki = pfc_config_in_ram.PI_GAINS.KI;
iv.pis.kp_nl = pfc_config_in_ram.PI_GAINS.KP_NL;
iv.pis.ki_nl = pfc_config_in_ram.PI_GAINS.KI_NL;
iv.pis.nl_threshold = (pfc_config_in_ram.PI_GAINS.NL_THRESHOLD << 12) / VBUS_FULL_RANGE;

//copy current loop gains
dest->COEFCONFIG.all = pfc_config_in_ram.COEFCONFIG.all;
dest->FILTERKPCOEF0.all = pfc_config_in_ram.FILTERKPCOEF0.all;
dest->FILTERKPCOEF1.all = pfc_config_in_ram.FILTERKPCOEF1.all;
dest->FILTERKICOEF0.all = pfc_config_in_ram.FILTERKICOEF0.all;
dest->FILTERKICOEF1.all = pfc_config_in_ram.FILTERKICOEF1.all;
dest->FILTERKDCOEF0.all = pfc_config_in_ram.FILTERKDCOEF0.all;
dest->FILTERKDCOEF1.all = pfc_config_in_ram.FILTERKDCOEF1.all;

SLUA713 – April, 2014

14 Designing a UCD3138 Controlled Bridgeless PFC

dest->FILTERKDALPHA.all= pfc_config_in_ram.FILTERKDALPHA.all;
dest->FILTERNL0.all = pfc_config_in_ram.FILTERNL0.all;
dest->FILTERNL1.all = pfc_config_in_ram.FILTERNL1.all;
dest->FILTERNL2.all = pfc_config_in_ram.FILTERNL2.all;
dest->FILTERCTRL.bit.NL_MODE = fc_config_in_ram.FILTERMISC.bit.NL_MODE;

FeCtrl1Regs.EADCCTRL.bit.AFE_GAIN = pfc_config_in_ram.FILTERMISC.bit.AFE_GAIN;
FeCtrl2Regs.EADCCTRL.bit.AFE_GAIN = pfc_config_in_ram.FILTERMISC.bit.AFE_GAIN;
Dpwm1Regs.DPWMCTRL2.bit.SAMPLE_TRIG1_OVERSAMPLE =

 pfc_config_in_ram.FILTERMISC.bit.SAMPLE_TRIG1_OVERSAMPLE;
Dpwm2Regs.DPWMCTRL2.bit.SAMPLE_TRIG1_OVERSAMPLE =

 pfc_config_in_ram.FILTERMISC.bit.SAMPLE_TRIG1_OVERSAMPLE;
}

3.10 DPWM Configuration
The output of the compensator is passed to a Digital PWM (DPWM) generator. The DPWM has two outputs,
which can be configured in many different ways to accommodate different power topologies. For bridgeless PFC
with CT sensing, since we need to sense the middle point of CT output, only DPWMB is used and configured as
Triangular mode. In this mode, the PWM pulse is centered in the middle of the period, rather than starting at one
end or the other. In Triangular Mode, only DPWM B is available. It is very easy to put a fixed sample trigger
exactly in the center of the On-time, because the center of the on-time does not move in this mode. The following
code example accommodates PWR026 PFC EVM, in which DPWM1B and DPWM2B are used and configured
as Triangular mode.

void init_dpwm1(void) // DPWM1B is used to drive 1st phase
{

Dpwm1Regs.DPWMCTRL0.bit.PWM_EN = 0; //disable everything

Dpwm1Regs.DPWMCTRL1.bit.GPIO_A_EN = 1; //turn off DPWM1A for now
Dpwm1Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; //turn off DPWM1B for now

 // Enable CBC and Blanking windows
Dpwm1Regs.DPWMCTRL0.bit.CBC_PWM_AB_EN = 1; // Enable cycle by cycle current limit.
Dpwm1Regs.DPWMCTRL0.bit.BLANK_B_EN = 1; // Enable blanking
Dpwm1Regs.DPWMBLKBBEG.all = 0x0000;
Dpwm1Regs.DPWMBLKBEND.all = 0x0500;

Dpwm1Regs.DPWMFLTCTRL.bit.B_MAX_COUNT = 2;
Dpwm1Regs.DPWMFLTCTRL.bit.ALL_FAULT_EN = 1; //enable this for OVP

Dpwm1Regs.DPWMCTRL2.bit.SAMPLE_TRIG_1_EN = 1; //enable sample trigger1

Dpwm1Regs.DPWMCTRL0.bit.PWM_MODE = 3; //triangular mode
Dpwm1Regs.DPWMCTRL1.bit.EVENT_UP_SEL = 0; //update right away

Dpwm1Regs.DPWMCTRL0.bit.CLA_EN = 1;
Dpwm1Regs.DPWMCTRL0.bit.PWM_EN = 1;
//enable OK here, because nothing will happen until DPWM and front end are globally enabled

}

void init_dpwm2(void) // DPWM2B is used to drive 2nd phase
{

Dpwm2Regs.DPWMCTRL0.bit.PWM_EN = 0; //disable everything

Dpwm2Regs.DPWMCTRL1.bit.GPIO_A_EN = 1; //turn off DPWM2A for now
Dpwm2Regs.DPWMCTRL1.bit.GPIO_B_EN = 1; //turn off DPWM2B for now

// Enable CBC and Blanking windows
Dpwm2Regs.DPWMCTRL0.bit.CBC_PWM_AB_EN = 1; // Enable cycle by cycle current limit.

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 15

Dpwm2Regs.DPWMCTRL0.bit.BLANK_B_EN = 1; // Enable blanking
Dpwm2Regs.DPWMBLKBBEG.all = 0x0000;
Dpwm2Regs.DPWMBLKBEND.all = 0x0500;

Dpwm2Regs.DPWMFLTCTRL.bit.B_MAX_COUNT = 2;
Dpwm2Regs.DPWMFLTCTRL.bit.ALL_FAULT_EN = 1; //enable this for OVP

Dpwm2Regs.DPWMCTRL2.bit.SAMPLE_TRIG_1_EN = 1; //enable sample trigger1

Dpwm2Regs.DPWMCTRL0.bit.PWM_MODE = 3; //triangular mode
Dpwm2Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN = 0; //master mode
Dpwm2Regs.DPWMCTRL1.bit.EVENT_UP_SEL = 0; //update right away
Dpwm2Regs.DPWMCTRL2.bit.SAMPLE_TRIG1_MODE = 0;//triggered at sample trigger register value

Dpwm2Regs.DPWMCTRL0.bit.CLA_EN = 1;
Dpwm2Regs.DPWMCTRL0.bit.PWM_EN = 1;
//enable OK here, because nothing will happen until DPWM and front end are globally enabled

}

void set_new_switching_frequency(void)
{

iv.switching_period = (SWITCH_FREQ_NUMERATOR/switching_frequency) << 4;
iv.period_times_2_14 = iv.switching_period << 14;
iv.dither_max_period = (SWITCH_FREQ_NUMERATOR/(switching_frequency - 4)) << 4;
iv.dither_min_period = (SWITCH_FREQ_NUMERATOR/(switching_frequency + 4)) << 4;
iv.dither_step = ((iv.dither_max_period - iv.dither_min_period) << 14)/DITHER_PERIOD;
//step for dither value

Dpwm1Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency
Dpwm2Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency
Dpwm1Regs.DPWMSAMPTRIG1.all = (iv.switching_period >> 1) + (iv.sample_trigger_offset * 4);
 // halfway plus some for driver delays
Dpwm2Regs.DPWMSAMPTRIG1.all = (iv.switching_period >> 1) + (iv.sample_trigger_offset * 4);
// halfway plus some for driver delays;
Dpwm1Regs.DPWMPHASETRIG.all = 0; //0 delay for next phase

}

void init_dpwms(void)
{

init_dpwm1();
init_dpwm2();
set_new_switching_frequency();

}

4 System Protection

System protection includes current protection and voltage protection. There are two levels of over voltage
protection, one is implemented through software with a lower threshold, and the other is through an on chip
analog comparator with a higher threshold. The current is protected as cycle-by-cycle based.

4.1 Software OVP Protection
This is pure software OVP protection. Vout is measured by ADC, the output of ADC is filtered for measurement
noise immunity, and then compared with a programmable threshold. The PWM will shut down if the
measurement is greater than threshold. ADC continues monitoring Vout, PWM will turn back on once Vout drops
below its setpoint. This allows the PFC enters a hiccup mode. This will be useful for OVP not caused by
hardware failure, but by sudden operation condition change, such as load transient.

SLUA713 – April, 2014

16 Designing a UCD3138 Controlled Bridgeless PFC

inline void pfc_on_state_handler(void)
{

if(iv.vin_squared_average > VAC_MIN_OFF_SQ_AVG) //if Vac above 80 volts
{
 if(iv.adc_avg[VBUS_CHANNEL] > VBUS_DPWM_OFF_LEVEL)//if we've hit OVP
 {

turn_off_pfc();
iv.supply_state = STATE_PFC_HICCUP;

 }
}
else
{
 turn_off_pfc();
 init_miscellaneous();
 iv.supply_state = STATE_IDLE;
}

}

inline void pfc_hiccup_state_handler(void)
{

if(iv.adc_avg[VBUS_CHANNEL] < VBUS_DPWM_ON_LEVEL) //if OVP gone
{
 LoopMuxRegs.GLBEN.all = 0x70F; //global enable all Front_ends and DPWMs
 turn_on_pfc();
 iv.supply_state = STATE_PFC_ON;
}

}

4.2 Hardware OVP Protection
As shown in Figure 1, Vout is also connected to an on chip analog comparator COMP_F. the comparator is
configured to turn off PWM automatically once get triggered. The comparator’s threshold is also programmable,
and its threshold is usually set a little bit higher than the software OVP. This provides a fast OVP protection. If
this OVP gets triggered, this usually means the PFC has serious hardware issue. For safety purpose, it will be
latched there once shut down.

Following is the code to configure this OVP:

// Enable ACOMP-F pin and connect to DPWM-1 and DPWM-2 for Vbus OV protection
FaultMuxRegs.DPWM1FAULTDET.bit.PWMB_ACOMP_F_EN = 1; // Connect ACOMP-F to DPWM-1
FaultMuxRegs.DPWM2FAULTDET.bit.PWMB_ACOMP_F_EN = 1; // Connect ACOMP-F to DPWM-2
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_SEL = 0; // Use threshold register for trip
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_POL = 1; // Above thresh to trip
FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_F_THRESH = ((Uint32)(PFC_CONFIG_TEMP.PFC_SETPOINT.VOUT_OV_LIMIT *
127) / VBUS_FULL_RANGE);

4.3 Cycle by Cycle Current Protection
The current is protected through on chip analog comparator COMP_D and COMP_E. It is cycle-by-cycle (CBC)
based. Once the analog comparator is triggered, the PWM is chopped for the remaining cycle, but it will turn
back on the next switching cycle. The code to configure the analog comparator for CBC is:

 // Enable ACOMP-D pin and connect to current limit on DPWM-1
 FaultMuxRegs.DPWM1CLIM.bit.ACOMP_D_EN = 1; // Connect ACOMP-D to DPWM-1
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_SEL = 0; // Use threshold register for trip
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_POL = 1; //Above thresh to trip
 FaultMuxRegs.ACOMPCTRL1.bit.ACOMP_D_THRESH = OC_COMPARATOR; // Trip value

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 17

 // Enable ACOMP-E pin and connect to current limit on DPWM-2
 FaultMuxRegs.DPWM2CLIM.bit.ACOMP_E_EN = 1; // Connect ACOMP-E to DPWM-2
 FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_E_SEL = 0; // Use threshold register for trip
 FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_E_POL = 1; // Above thresh to trip
 FaultMuxRegs.ACOMPCTRL2.bit.ACOMP_E_THRESH = OC_COMPARATOR; // Trip value

5 Advanced Features

The following lists some of the common used features for bridgeless PFC. For more advanced PFC features,
please refer to [2].

5.1 Frequency Dithering
Frequency dithering refers to modulating the switching frequency to achieve a reduction in conducted EMI noise
beyond the capability of the line filter. This total range from minimum to maximum frequency is defined as the
dither magnitude, and is centered around the nominal switching frequency. The rate at which PWM traverses
from one extreme to the other and back again is defined as the dither rate. Both these two parameters are
programmable.

inline void frequency_dithering(void)
{

if(status_1.bits.dither_enabled == 1)
{
 if(iv.dither_direction == 1)
 {

iv.period_times_2_14 = iv.period_times_2_14 + iv.dither_step;
iv.switching_period = iv.period_times_2_14 >> 14;
if(iv.switching_period > iv.dither_max_period)
{
 iv.switching_period = iv.dither_max_period;
 iv.dither_direction = 0;
}

 }
 else //if dither direction equalled 0 to start with
 {

iv.period_times_2_14 = iv.period_times_2_14 - iv.dither_step;
iv.switching_period = iv.period_times_2_14 >> 14;

if(iv.switching_period < iv.dither_min_period)
{
 iv.switching_period = iv.dither_min_period;
 iv.dither_direction = 1;
}

 }
 Dpwm1Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency
 Dpwm2Regs.DPWMPRD.all = iv.switching_period; //new period for new frequency

Dpwm1Regs.DPWMSAMPTRIG1.all = (iv.switching_period >> 1) + (iv.sample_trigger_offset * 4);
 Dpwm2Regs.DPWMSAMPTRIG1.all = (iv.switching_period >> 1) + (iv.sample_trigger_offset * 4);
}

}

5.2 AC Drop Detection
The AC drop detection algorithm is shown in Figure 5. Vin is sampled every 100μs. Its measurement is
compared with a predetermined threshold “AC_DROP_V_RECT_THRESHOLD”. If the consecutive samples

SLUA713 – April, 2014

18 Designing a UCD3138 Controlled Bridgeless PFC

below this threshold greater than a predetermined number “AC_DROP_COUNT_MAX”, then AC drop is
detected, a AC drop signal is send out to host through a GPIO.

The threshold and number of consecutive samples will affect the sensitive of AC drop detection, they can be
tuned base on requirement.

Figure 5. AC Drop Detection

The following is the code to implement this function:
inline void check_ac_drop(void)
{

if(iv.vin_filtered > AC_DROP_V_RECT_THRESHOLD)
{
 iv.ac_drop_count = 0; //if over threshold, clear counter
}
else
{
 iv.ac_drop_count++;
 if(iv.ac_drop_count > AC_DROP_COUNT_MAX)
 {

iv.ac_drop = 1;
iv.ac_drop_recovery_not_complete = 1;
iv.vin_squared_for_ac_drop = 0; //clear for ac recovery detection
MiscAnalogRegs.GLBIOVAL.bit.DPWM3B_IO_VALUE = 0;
//pull down opto to signal AC drop to primary side

 }
}

if(iv.vin_squared_for_ac_drop > AC_UNDROPPED_THRESHOLD)
//if above ac not dropped threshold
{

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 19

 iv.ac_drop = 0; // we've got enough energy, clear AC drop warning
 MiscAnalogRegs.GLBIOVAL.bit.DPWM3B_IO_VALUE = 1;
 //turn off AC drop output signal also - inactive high
}

}

5.3 X-CAP Reactive Current Compensation
Every PFC has an electromagnetic interference (EMI) filter at the input end. The X capacitors of the EMI filter will
cause the AC input current leading AC voltage, which will degrade power factor (PF). This situation gets worse at
light-load and high-line. To increase the PF at light-load, we can force the inductor current delayed a little bit so
that the total AC current will match the input voltage. This can be achieved by delay the current reference.

//stuff for EMI CAP compensation
int16 cir_buff[64]; //64buffer for vin
int32 cir_buff_ptr; //pointer for spot in cir buff;
int32 cir_buff_delay; //delay for waveform from circular buffer.

inline void calculate_current_target_ct(void)
{

int32 pointer;

//for EMI CAP compensation
iv.cir_buff[iv.cir_buff_ptr] = iv.vin_filtered;
pointer = (iv.cir_buff_ptr - iv.cir_buff_delay) & 0x3f; //get pointer to delayed signal
iv.cir_buff_ptr = (iv.cir_buff_ptr + 1) & 0x3f;

iv.vbus_scaled = (iv.adc_avg[VBUS_CHANNEL] * VBUS_TO_VAC_SCALING) >> 15;

iv.cla_output_filtered = (Uint32)Filter1Regs.FILTERYNREAD.bit.YN + iv.cla_output_filtered - (iv.cla_output_filtered >> 2);

if(iv.vbus_scaled > iv.vin_filtered)
{
 iv.numerator_1 = iv.vbus_scaled - iv.vin_filtered;
}
else
{
 iv.numerator_1 = 0;
}

iv.numerator_2 = (iv.i_target_average * iv.numerator_1) >> 8;

iv.numerator_3 = (iv.cir_buff[pointer] * iv.numerator_2);

iv.denominator = ((iv.cla_output_filtered >> 6) * iv.vbus_scaled) >> 11;

iv.i_target_sensed = (iv.numerator_3 / iv.denominator) + iv.i_target_offset;

if(iv.i_target_sensed > 0x3ff) //saturate current target at maximum current
{
 iv.i_target_sensed = 0x3ff;
}

}
This is a traditional way to compensate the X-cap reactive current; reference [5] provides another novel method
with better performance.

SLUA713 – April, 2014

20 Designing a UCD3138 Controlled Bridgeless PFC

6 Firmware structure
The firmware is divided as 3 major parts: background loop, standard interrupt loop and fast interrupt loop, as
shown below:

Background Loop
System initialization
Voltage feed forward
System monitoring
Dynamic system optimization
PMBus communication
UART transmit data

Standard interrupt
ADC measurement
State machine
Vrms calculation
Voltage loop calculation
Current reference calculation
AC drop detection
UART receive data
Frequency dithering

Fast interrupt
OVP

Figure 6. Firmware Structure

6.1 Background Loop
The firmware starts from function main(). In this function, after the system initialization, it goes to an infinite loop.
All the non time critical tasks are put in this loop, it includes:

 Calculate voltage feed forward
 System monitoring
 Dynamic system optimization
 PMBus communication
 UART transmit data

User can always add any non time critical functions in this loop

void main()
{

MiscAnalogRegs.IOMUX.all = 0; //enable JTAG
look_for_interrupted_dflash_erase(); //Check to see if the last DFLASH erase was interrupted
pmbus_write_restore_default_all(); //load PFC configuration from data flash
init_miscellaneous();
init_adc_polled();
init_uart();
init_front_ends();
init_dpwms();
init_filters();
init_loop_mux();
init_fault_mux();
init_timer_interrupt();
init_pmbus();

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 21

string_out_0("\033[2J"); //clear screen

for(;;)
{
 pmbus_handler();

 voltage_feed_forward();

 pmbus_handler();

 system_monitoring();

 pmbus_handler();

 if(iv.supply_state == STATE_PFC_ON)
 {

dynamic_system_optimization(); //change compensation based on Vin
 }

 pmbus_handler();

 if (erase_segment_counter > 0)
 {

erase_task(); // Handle the DFlash segment erases
 }

 pmbus_handler();

 if(uart_tx_timeout >= UART_TX_TIME)
 {

output_primary_secondary_message();
 }
 else
 {

process_uart_rx_data();
 }
}

}

6.2 Standard Interrupt Loop (IRQ)
Standard interrupt loop is triggered by a timer at every 20μs. It is used to handle all the time critical tasks. It
includes:

 ADC measurements
 PFC State machine
 Vin_rms calculation
 Voltage loop calculation
 Current reference calculation
 Vin drop detection
 UART receive data
 Frequency dithering

However, to handle all these tasks in 20μs will cause interrupt overflow. To deal with this issue, the tasks
distribution state machine is used to handle different task at different time interval.

SLUA713 – April, 2014

22 Designing a UCD3138 Controlled Bridgeless PFC

6.2.1 Tasks Distribution State Machine
void standard_interrupt(void)
{

poll_adc();
rectify_vac();
calculate_current_target_ct();

switch(iv.interrupt_state)
{
 case I_STATE_1 :
 handle_voltage_loop();
 iv.interrupt_state = I_STATE_2;
 break;

 case I_STATE_2 :
 half_cycle_processing();
 iv.interrupt_state = I_STATE_3;
 break;

 case I_STATE_3 :
 check_ac_drop();
 iv.interrupt_state = I_STATE_4;
 break;

 case I_STATE_4 :
 uart_receive_data();
 iv.interrupt_state = I_STATE_5;
 break;

 case I_STATE_5 :
 supply_state_handler(); //run PFC state machine

 frequency_dithering();

 iv.interrupt_state = I_STATE_1;
 break;

 default: //if it's in an illegal state
 iv.interrupt_state = I_STATE_1; //start it up again
 break;
}
TimerRegs.T16PWM0CMPCTRL.all = 3; //clear interrupt bit by a read/write.

}

6.2.2 PFC State Machine
PFC state machine is only one of the tasks in standard interrupt, it is called every 100μs. A typical PFC state
machine is shown below:

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 23

Figure 7. PFC State Machine

As soon as Vin is greater than 85V, the relay close and PFC is starting up. A 100ms delay is added after relay
close to deal with the relay bouncing issue. After that, PFC will gradually ramp up its output voltage until Vout
reaches its setpoint. At this point, PFC enters its final regulation state and will stay there until some abnormal
conditions occurs, such as Vout over voltage or Vin under voltage.

inline void supply_state_handler(void)
{

switch(iv.supply_state)
{
 case STATE_IDLE :
 idle_state_handler();
 break;

 case STATE_RELAY_BOUNCE:
 relay_bounce_state_handler();
 break;

 case STATE_RAMP_UP :
 ramp_up_state_handler();
 break;

 case STATE_PFC_ON:
 pfc_on_state_handler();
 break;

 case STATE_PFC_HICCUP:
 pfc_hiccup_state_handler();
 break;

 case STATE_PFC_SHUT_DOWN:
 pfc_shut_down_state_handler();

SLUA713 – April, 2014

24 Designing a UCD3138 Controlled Bridgeless PFC

 break;

 default:
 break;
}

}

6.3 Fast Interrupt (FIQ)
The FIQ is triggered by the comparator on AD06 (Comparator F). Since DPWM1B and DPWM2B are already
turned off to protect the PFC, what the FIQ does is only to report an OVP failure through a GPIO and set the
PFC state into a shut down latch state. The customer can always add more time critical tasks in function:

#pragma INTERRUPT(fast_interrupt,FIQ)
void fast_interrupt(void)
{

volatile int32 temp;

turn_off_pfc();

iv.supply_state = STATE_PFC_SHUT_DOWN;

temp = FaultMuxRegs.FAULTMUXINTSTAT.all;//read to clear the interrupt flag

}

7 Graphical User Interface (GUI)

A graphical user interface (GUI) named “Fusion Digital Power Designer” is provided by Texas Instruments to
facilitate UCD3138 controlled power converter designed. By talking to the GUI through PMBus, the PFC
operating status can be monitored, its operation setpoints can be configured, and the control loop can be tuned
on the fly.

The GUI is deigned to support the most popular topologies, including PFC. Different topology will have different
interface. A setup id is used in the PFC firmware to tell the GUI that this is a PFC, so that when the GUI starts, it
will open a interface accommodate to a PFC. In addition, the setup id specific the PFC topology (single phase,
interleaved or bridgeless), and it also includes the hardware modules used in PFC current loop: which front end,
which CLA and which DPWM are used. The following setup id is used in the bridgeless PFC EVM PWR026:

#define SETUP_ID "VERSION1|PFC002"

In this case, the “PFC002” is defined as bridgeless PFC, with FE1, FE2, CLA1, DPWM1, DPWM2 consist the
current loop.

 SLUA713 – April, 2014

 Designing a UCD3138 Controlled Bridgeless PFC 25

Figure 8. Monitor PFC Operating Status

Figure 9. Configure PFC Operation Setpoints

SLUA713 – April, 2014

26 Designing a UCD3138 Controlled Bridgeless PFC

Figure 10. Tune PFC Control Loop

The current and voltage loop can be tuned through the GUI. As shown in Figure 10, This GUI provides interface
to tune the current and voltage control loop compensator, it also shown the loop bode plot, as well as bandwidth,
phase margin, and gain margin. The loop tuning is much simplified. For details of the GUI, please refer to [6].

8 PFC Tuning and THD Reduction

PFC current loop tuning can be a time consuming and challenging task for the PFC design engineer. It requires
the current waveform not only to be stable, but also to be smooth with very low THD and high PF. It gets more
and more challenging with the ever increasing THD and PF requirements. The digital controller provides more
flexibility and additional ways to achieve these increasing performance requirements. To make this task easier TI
provides a GUI that greatly simplifies the work involved in these tasks. Additionally, application note [7] also
provides a step by step guide of how to tune the current loop of a UCD3138 controlled PFC, it also summarizes
some of the most common but effective methods to reduce the current distortion in a digitally controlled PFC.

Reference:

[1] UCD3138 datasheet
[2] TI application note: Designing a UCD3138 Controlled Single Phase PFC
[3] TI application note: Designing a UCD3138 Controlled Interleaved PFC
[4] SLUU995: UCD3138 Digital Power Peripherals Programmer’s Manual
[5] TI application note: A Novel EMI Filter X-Cap Reactive Current Compensation Method to increase PF
[6] TI user guide: SLUA676
[7] TI application note: UCD3138 PFC Tuning.

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

